Promoting Ensemble Diversity with Interactive Bayesian Distributional Robustness for Fine-tuning Foundation Models Ngoc-Quan Pham*, Tuan Truong*, Quyen Tran, Tan Nguyen, Dinh Phung, Trung Le ## How do we utilize large pre-trained models? - Foundational models are increasingly demonstrating remarkable capabilities over a wide array of tasks. - Goal: Effectively utilizing these pre-trained models for downstream tasks. However, adapting these models via full fine-tuning presents significant limitations: high computational cost, overfitting, storage overhead... ## Parameter-efficient Fine-tuning (PEFT) - Techniques to adapt large pre-trained models with minimal parameter updates. - Pros: Reduce computational cost and memory usage while maintaining performance, and preserving pre-trained knowledge. - Cons: PEFT methods can lead to overconfident predictions, especially when fine-tuned on small datasets. #### **Motivations** Our method relies on: - Bayesian Inference: enhances robustness, tackling uncertainty - Flat minimizers: improve neural network generalization by helping models find broader local minima, making them more robust - Distributional Robustness: a framework for learning under distributional uncertainty, which seeks the worst-case among a ball of "local distributions". #### **Motivations** - We also want to promote ensemble diversity - Define the **approximate posterior distribution** Q^K , where samples are concatenated models $\theta_{1:K}$ - We learn *Q* so that the sampled models reside in *low-loss*, *low-sharpness* regions while *maintaining ensemble diversity*. - Leverage DRO to alleviate training instabilities ## Interactive Bayesian Distributional Robustness ullet We propose a *distributional population loss* where l_{div} encourages the diversity among model particles $$\mathcal{L}_{\mathcal{D}}(Q^K) = \mathbb{E}_{\boldsymbol{\theta} \sim Q^K} \left[\frac{1}{K} \sum_{i=1}^K \mathcal{L}_{\mathcal{D}}(\theta_i) + \alpha \mathbb{E}_{\mathcal{D}} \left[l_{div}(\theta_{1:K}; x, y) \right] \right].$$ **Theorem 4.1.** With the probability at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^N$, we have $$\mathcal{L}_{\mathcal{D}}(Q^{K}) \leq \min_{\lambda \geq 0} \left\{ \lambda \rho + \mathbb{E}_{\boldsymbol{\theta} \sim Q^{K}} \left[\max_{\boldsymbol{\theta}'} \left\{ \mathcal{L}_{\mathcal{S}}(\boldsymbol{\theta}') - \lambda c^{K}(\boldsymbol{\theta}, \boldsymbol{\theta}') \right\} \right] \right\} + L \sqrt{\frac{KD_{KL}(Q, P) + \log \frac{1}{\delta}}{2N}}$$ **Remark**: This framework operates on the joint distribution Q^K and incorporates the divergence loss l_{div} , enabling us to model interactions between the particle models $\theta_{1:K}$ ## **Divergence Loss** - Let f_{-y}^i be the non-maximal prediction probabilities by eliminating the prediction probability of the ground-truth label y - We encourage the non-maximal predictions to diverge, while maximizing prediction probability of the ground-truth label. - Motivated by the theory of Determinantal Point Processes, we define the ensemble diversity: $$l_{div}\Big(\theta_{1:K}; x, y\Big) = \operatorname{Vol}^2\Big(\Big[\tilde{f}_{-y}^i\Big]_{i \in [C]}\Big)$$ where $$\tilde{f}_{-y}^i = \frac{f_{-y}^i}{\|f_{-y}^i\|}, \left[\tilde{f}_{-y}^i\right]_{i \in [C]} \in \mathbb{R}^{(C-1) \times K}, \left[C\right] = \left\{1,...,C\right\}.$$ 7 #### **Practical Method** • Define $Q = \frac{1}{K} \sum_{i=1}^K \mathcal{N}\Big(\mu_i, \sigma^2 \mathbb{I}\Big)$ and $P = \mathcal{N}\Big(\mathbf{0}, \mathbb{I}\Big)$. With a few relaxations, the problem becomes $$\min_{\mu_{1:K},\sigma} \min_{\lambda \geq 0} \left\{ \lambda \rho + \mathbb{E}_{\theta_{1:K} \sim Q} \left[\frac{1}{K} \sum_{i=1}^{K} \max_{\theta'_{i}} \tilde{\ell}(\theta'_{i},\theta_{i};x,y) \right] \right\} + \frac{\beta}{K} \left[\sum_{i=1}^{K} \|\mu_{i}\|^{2} + d(\sigma - \log \sigma) \right]$$ where $\tilde{\ell}(\theta'_{i},\theta_{i};x,y) = l(\theta'_{i};x,y) + \alpha l_{div}(\theta'_{i},\theta_{-i};x,y) - \lambda c(\theta_{i},\theta'_{i})$ • We alternatively update $\mu_{1:K}$ and λ with gradient descent, and update θ'_i with a gradient ascent ## Interactive Bayesian Distributional Robustness ``` Algorithm 1 Interactive Bayesian Distributional Robustness (IBDR) ``` ``` Input: Initial particle means \mu_{1:K}; ascend step size \alpha_1; learning rates \alpha_{\lambda}, \alpha_{\mu} Output: Optimal particle means \mu_{1:K} while not converged do Sample batch \mathcal{B} = \{(x_1, y_1), \dots, (x_b, y_b)\} Sample \epsilon_i \sim \mathbb{N}(0, \mathbb{I}) and \theta_i \leftarrow \mu_i + \sigma \epsilon_i Compute \theta_i' \leftarrow \theta_i + \alpha_1 \nabla_{\theta_i} \tilde{\ell}(\theta_i', \theta_i; x, y) Compute \lambda \leftarrow \lambda - \alpha_{\lambda} \nabla_{\lambda} \overline{\mathcal{L}}(\lambda, \theta_i', \theta_i; x, y) Compute \mu_i \leftarrow \lambda - \alpha_{\mu} \nabla_{\mu_i} \overline{\mathcal{L}}(\lambda, \theta_i', \theta_i; x, y) end while return \mu_{1:K} ``` ## **Experiments** #### **Image Classification** Table 1. Top-1 Accuracy on VTAB-1K. The accuracies are reported with ViT-B/16 pre-trained on ImageNet-21K | | Natural | | | | | | | Specialized | | | | | Structured | | | | | | | | |--|--------------------------------------| | Method | CIFAR100 | Caltech 101 | DTD | Flowers102 | Pets | SVHN | Sun397 | Camelyon | EuroSAT | Resisc45 | Retinopathy | Clevr-Count | Clevr-Dist | DMLab | KITTI | dSpr-Loc | dSpr-Ori | sNORB-Azim | sNORB-Ele | AVG | | FFT
LoRA
SAM | 68.9
67.1
72.7 | 87.7
90.7
90.3 | 64.3
68.9
71.4 | 97.2
98.1
99.0 | 86.9
90.1
90.2 | 87.4
84.5
84.4 | 38.8
54.2
52.4 | 79.7
84.1
82.0 | 95.7 94.9 92.6 | 84.2
84.4
84.1 | 73.9
73.6
74.0 | 56.3
82.9
76.7 | 58.6
69.2
68.3 | 41.7
49.8
47.9 | 65.5
78.5
74.3 | 57.5
75.7
71.6 | 46.7
47.1
43.4 | 25.7
31.0
26.9 | 29.1
44.0
39.1 | 62.3
68.4
70.5 | | SA-BNN
SGLD
DeepEns
BayesTune
SVGD | 65.1
68.7
68.6
68.2
71.3 | 91.5
91.0
88.9
91.7
90.2 | 71.0
67.0
67.7
69.5
71.0 | 98.9
98.6
98.9
99.0
98.7 | 89.4
89.3
90.7
90.7
90.2 | 89.3
83.0
85.1
86.4
84.3 | 55.2
51.6
54.5
51.2
52.7 | 86.2
81.2
82.6
84.9
83.4 | 94.5
93.7
94.8
95.3
93.2 | 86.4
83.2
82.7
84.1
86.7 | 75.2
76.4
75.3
75.1
75.1 | 61.4
80.0
46.6
82.8
75.8 | 63.2
70.1
47.1
68.9
70.7 | 40.0
48.2
47.4
49.7
49.6 | 71.3
76.2
68.2
79.3
79.9 | 64.5
71.1
71.1
74.3
69.1 | 34.5
39.3
36.6
46.6
41.2 | 27.2
31.2
30.1
30.3
30.6 | 31.2
38.4
35.6
42.8
33.1 | 68.2
68.4
67.0
68.5
70.9 | | IBDR | 73.0 (.11) | 92.1 (.31) | 71.7 (.12) | 99.3 (0.15) | 91.4 (0.16) | 91.3 (.36) | 56.7 (.18) | 85.1 (.24) | 95.0
(.44) | 87.3 (.14) | 76.5 (.12) | 78.1
(.11) | 75.1 (.24) | 53.6 (.42) | 80.4 (.26) | 77.1 (.29) | 49.3 (.19) | 28.9 (.13) | 40.1 (.37) | 73.6 | ## **Experiments** #### **Image Classification** Table 2. Expected Calibration Errors (ECE) on VTAB-1K. The results are reported with ViT-B/16 pre-trained on ImageNet-21K | | Natural | | | | | | | Specialized | | | | | Structured | | | | | | | | |--|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------| | Method | CIFAR100 | Caltech 101 | DTD | Flowers102 | Pets | SVHN | Sun397 | Camelyon | EuroSAT | Resisc45 | Retinopathy | Clevr-Count | Clevr-Dist | DMLab | KITTI | dSpr-Loc | dSpr-Ori | sNORB-Azim | sNORB-Ele | AVG | | FFT
LoRA
SAM | 0.29
0.38
0.21 | 0.23
0.19
0.25 | 0.20
0.18
0.20 | 0.13
0.05
0.11 | 0.27
0.09
0.12 | 0.19
0.10
0.15 | 0.45
0.14
0.14 | 0.21
0.11
0.17 | 0.13
0.09
0.16 | 0.18
0.12
0.14 | 0.17
0.11
0.09 | 0.41
0.12
0.12 | 0.44
0.19
0.17 | 0.42
0.34
0.24 | 0.22
0.18
0.16 | 0.14
0.14
0.21 | 0.23
0.21
0.19 | 0.24
0.18
0.13 | 0.40
0.31
0.16 | 0.26
0.17
0.16 | | SA-BNN
SGLD
DeepEns
BayesTune
SVGD | 0.22
0.26
0.24
0.32
0.20 | 0.08
0.20
0.12
0.93
0.13 | 0.19
0.17
0.22
0.20
0.19 | 0.15
0.05
0.04
0.03
0.04 | 0.12
0.18
0.10
0.85
0.16 | 0.12
0.14
0.13
0.12
0.09 | 0.24
0.23
0.23
0.22
0.20 | 0.13
0.18
0.16
0.13
0.15 | 0.06
0.09
0.07
0.07
0.11 | 0.12
0.12
0.15
0.13
0.13 | 0.18
0.32
0.21
0.22
0.12 | 0.14
0.26
0.31
0.12
0.17 | 0.21
0.29
0.32
0.23
0.21 | 0.22
0.21
0.36
0.30
0.30 | 0.24
0.26
0.13
0.24
0.18 | 0.25
0.42
0.32
0.28
0.21 | 0.41
0.39
0.31
0.28
0.25 | 0.46
0.11
0.16
0.31
0.14 | 0.34
0.24
0.29
0.26
0.26 | 0.20
0.22
0.20
0.23
0.18 | | IBDR | 0.16 (.03) | 0.08 (.02) | 0.19
(.02) | 0.02 (.01) | 0.07 (.01) | 0.07 (.01) | 0.13 (.02) | (.03) | 0.06
(.02) | 0.11 (.02) | 0.11
(.01) | 0.13
(.01) | 0.24
(.02) | 0.30 (.03) | 0.12 (.01) | 0.11 (.01) | 0.30
(.05) | 0.30
(.04) | 0.16 (.02) | 0.14 | ## **Experiments** #### **Commonsense Reasoning** Table 3. Accuracy/ECE on six common-sense reasoning datasets | Met | tric | Datasets | | | | | | | | | | | |---------|--------|----------|-------|-------|-------|-------|-------|-------|--|--|--|--| | Type | Method | WG-S | ARC-C | ARC-E | WG-M | OBQA | BoolQ | AVG | | | | | | | MLE | 68.99 | 69.10 | 85.65 | 74.53 | 81.52 | 86.53 | 77.72 | | | | | | | MAP | 68.62 | 67.59 | 86.55 | 75.61 | 81.38 | 86.50 | 77.71 | | | | | | | MCD | 69.26 | 68.43 | 86.07 | 76.18 | 81.49 | 87.15 | 78.10 | | | | | | ACC (↑) | ENS | 69.57 | 66.20 | 84.40 | 75.32 | 81.38 | 87.09 | 77.33 | | | | | | | BBB | 67.54 | 68.11 | 85.63 | 73.41 | 81.72 | 87.19 | 77.27 | | | | | | | LAP | 69.20 | 66.78 | 80.05 | 75.55 | 82.12 | 86.95 | 76.78 | | | | | | | BLoB | 70.89 | 70.83 | 86.68 | 74.55 | 82.73 | 86.80 | 78.75 | | | | | | | IBDR | 72.51 | 70.56 | 86.95 | 76.46 | 84.60 | 86.89 | 79.66 | | | | | | | MLE | 29.83 | 29.00 | 13.12 | 20.62 | 12.55 | 3.18 | 18.05 | | | | | | | MAP | 29.76 | 29.42 | 12.07 | 23.07 | 13.26 | 3.16 | 18.46 | | | | | | | MCD | 28.06 | 27.73 | 12.31 | 18.27 | 15.12 | 3.49 | 17.50 | | | | | | ECE (↓) | ENS | 28.52 | 29.16 | 12.57 | 20.86 | 15.34 | 9.61 | 19.34 | | | | | | | BBB | 21.93 | 25.84 | 12.42 | 15.89 | 11.23 | 3.76 | 15.18 | | | | | | | LAP | 4.15 | 16.25 | 33.29 | 7.40 | 8.70 | 1.30 | 11.85 | | | | | | | BLoB | 20.62 | 20.61 | 9.43 | 11.23 | 8.36 | 2.46 | 12.12 | | | | | | | IBDR | 24.17 | 21.20 | 9.71 | 11.19 | 5.82 | 1.54 | 12.27 | | | | | #### Conclusion - We introduce a novel Bayesian framework that explicitly models the interaction between particles - We propose Interactive Bayesian Distributional Robustness, which simultaneously enhances ensemble diversity, generalization ability, and distributional robustness ## Thank you