R BN TRE P

\y2/ Gaoling School of Artificial Intelligen

&=’ RENMIN UNIVERSITY OF CHINA

Understanding Model Ensemble in
Transferable Adversarial Attack

ICML 2025

Wei Yao*, Zeliang Zhang*, Huayi Tang, Yong Liu*
Renmin University of China

June 25th, 2025



O VN =

o= Gaoling School of Artificial Intelligence

p Content

* Background
* Key Definitions
* Theoretical Results

* Experiments



W ECE YNy e

—=7/ Gaoling School of Artificial Intelligence

b Content

* Background



FHA TR HESA b

Gaoling School of Artificial Intelligence

p Adversarial Example

x sign(V,J(0,z,y)) esion (Vo (0, ,20))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Credit to: Explaining and Harnessing Adversarial Examples. |J Goodfellow et al. ICLR 2015.
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b Transferable Adversarial Attack
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Transferable Adversarial Model Ensemble Attack
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i Statistical Learning Theory

Generalization bound (Rademacher complexity):

In(1/9)

err(h) < err(h) + R,,(H) +

T
Generalization error Empirical error Model Complexity Sample Complexity
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b Motivation

Statistical Learning Theory Transferable Adversarial Model Ensemble Attack

More data More surrogate models
Independent data Diverse surrogate models
Less complexity Less complexity
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* Key Definitions



> Data:
> Label:

» Adversarial example:
» Model parameter:

» Model ensemble:

» Model output:

» Loss function:

r € R?
y e R

z = (x,y)
0 € © and 0 ~ Pg

(91,. . .,QN) ~/ P@N
y=[f(0:")
((9,y)
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¥ Model Ensemble Adversarial Attack

» Population risk: Lp(z) = Egupe [L(f(0; 2), )]
|

> Empirical risk: Lg(z) = N ;E (f (0i37),9)

> The most transferable adversarial example: =~ = arg 2115’&?) Lp(z)

» Adversarial example: L = arg mg}gaé) Lp(z)
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¢ Transferability Error

Definition 3.1 (Transferability Error). The transferability
error of z with radius e is defined as:

TE(z,e) = Lp(z*) — Lp(2). )

Lemma 3.2. The transferability error defined by Eq. (5) is

bounded by the largest absolute difference between Lp(z)
and Lg(z2), i.e.,

TE(z,€) < 2sup |Lp(z) — Le(2)|. (6)
2€Z
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» Always non-negative

» TE|, adversarial transferability{

Let Population risk = Empirical risk
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b Diversity of Model Ensemble Attack

Definition 3.3 (Diversity of Model Ensemble Attack). The
diversity of model ensemble attack across 6 ~ Pg for a
specific adversarial example z = (z,y) is defined as the
variance of model prediction:

Vargpe (£(8;2)) = Eonpe [f(6;%) — Eonpo f(852)] -
Idea: ensemble learning theory

» Diversityt, Overfitting |

> Suitable for multi-class classification
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Definition 3.4 (Empirical Model Ensemble Rademacher [Intuition: complexity of input space
Complexity). Given the input space Z2 = X x Y and N ,

classifiers f(61;), - , f(O;-). Let & = {0 }ic(n) be a relative to the surrogate models.
collection of independent Rademacher variables, which are
random variables taking values uniformly in {+1, —1}. We

define the empirical model ensemble Rademacher complex- > Simple input space: Ry (Z) =0

ity Ry (Z) as follows: » Complex input space: Ry(Z)1
/ N ]
Rn(Z) = IUE 21612 N ;Gﬂ (f (0i52) ,y)

Idea: empirical Rademacher complexity

14
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Y Vulnerability-diversity Decomposition

Theorem 4.1 (Vulnerability-diversity Decomposition). For  [ptuition:

a data point z = (xz,y), we consider the squared er-

ror loss 1(f(0;2),y) = [f(0;z) —y]°>. Let f(§;z) = » Strong & diverse surrogate models
Eo~pe f(0; ) be the expectation of prediction over the dis-
tribution on the parameter space. Then there holds

TE(z,€) = Lp(z™) — l(f(@ z),y) — Varg~pe f(0; ) .

g~

Vulnembzhty Diversity

» Vulnerability-diversity trade-off

©®)

Remark. A similar formulation also applies to the KL diver-
gence loss in the multi-class classification setting, which is
proved in Appendix C.3.

Idea: bias-variance decomposition
16



¢ Ensemble Complexity of MLP

Lemma 4.2 (Ensemble Complexity of MLP). Let H =
{x = Widp_1 (Wi_1¢1_2 (... 01 (Wix)))} be the class of
real-valued networks of depth [, where x© € R W, €
R+1%4i - Given N classifiers from H, where the param-
eter matrix is W;;,i € {1,---,n},j € {1,---,l} and
l :
T = [lj=15uPiepn) [Wijllp. Let ||lz[r < B. With I-
Lipschitz activation functions ¢, -+ , ¢;_1 and 1-Lipschitz
loss function {(y f(x)), there holds:

(\/(2 log 2)] + 1) BT
\/N

Remark. We also derive the upper bound of Ry (Z) for the
cases of linear model (Appendix B.2) and two-layer neural
network (Appendix B.3). These results are special cases of
the above theorem.

RN(Z) < (10)
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Idea: Rademacher complexity bound

Intuition:

» More surrogate models

» Reducing model complexity

17
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¥ Upper Bound of Transferability Error

Theorem 4.3 (Upper bound of Transferability Error). Given
the transferability error defined by Eq.(5) and general
rademacher complexity defined by Eq. (8). Let Pgy~ . be . . .
the joint measure induced by the product of the margmals. Proof: learning theory + information theory
If the loss function { is bounded by B € R, and Pgn is

absolutely continuous with respect to ’P N g forany func- Key takeaways:

Idea: Uniform convergence bound

tion f;, then for o > 1 and v = wu‘h probability at
least 1 — 0, there holds » More surrogate models
TE(z,€) < ARN(Z)+ » Diverse surrogate models
L. 4 » Reducing model complexit
18+/32 2%2T5 He (P@N”’Pt@f:l @) g P y
\ o 5 (1)

where H,, (-||-) is the Hellinger integrals (Hellinger, 1909)
with parameter o, which measures the divergence between

two probability distributions if o > 1 (Liese & Vajda, 2006 ). 18



() WA TRAEEDE

N2/ Gaoling School of Artificial Intelligen

Y Hellinger Integral

An mtuitive example in Appendix C.6 leads to the following bound:

TE(z,€) <4ARN(Z) + \/1862 Int - f(]ifv) - 3632 1n 4}@ . i{

Several cases of key models f(N):

1. f(N)=0O(N?), where s € (0,1)
2. f(N)=0O(nN)

3. f(N)=sN, where s € (0,1)

19
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¥ Information-theoretic Analysis

Theorem C.10. Given N surrogate models 8" ~ Pgn as the ensemble components. Let 6 — (81,...,0N) ~ Pon
be the target models, which is an independent copy of 0. Assume the loss function ¢ is bounded by 8 € Ry and
Pen is absolutely continuous with respect to Pgn . For a > 1 and adversarial example z = (x,y) ~ Pz, Let
AnN(0,z) = Lp(z) — Lg(z). Then there holds

E AN(G,Z)

<2B-Drv (P@N“P@f:l @) T

o (1(0%:2) + Lo (PP o))

where Doy (-||-), I(:||-) and H,(:||-) denotes TV distance, mutual information and Hellinger integrals, respectively.

Z,GNNPZ oN

Key takeaways:
» More surrogate models

» Diverse surrogate models

» Reducing model complexity

20
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¥ Experimental Setup

> Datasets:

» Validation: MNIST, Fashion-MNIST, CIFAR-10

» Exploration: ImageNet

> Models:

» Validation: MLP (1-3 layers), CNN (1-3 layers), ResNet-18

» Exploration: ResNet-50, VGG-16, MobileNet-V2, Inception-V3,

ViT-B16, P1T-B, Visformer, Swin-T

22



b Attack Dynamics
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Figure 2. Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs on the MNIST dataset.

» Vulnerability-diversity decomposition

» The trend of variance

» The potential complexity-diversity trade-off

23
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b Attack Dynamics
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Figure 3. Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs on the Fashion-MNIST dataset.
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Figure 6. Evaluation of ensemble attacks with increasing the number of steps using MLPs and CNNs on the CIFAR-100 dataset. 4



b Ensemble Framework
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Figure 5. Evaluation of ensemble attacks with increasing the number of models using MLPs and CNNs on the three datasets. o5
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¥ Model Complexity

Table 1. Effect of varying max norm constraints on adversarial attack performance, measured by classification accuracy (%, lower is
better). FC and CNN denote fully connected and convolutional networks with increasing layers.

MaxNorm FC1 FC2 FC3 CNNl1 OCNN2 OCNN3 Avg

0.1 84.66 87.80 85.39 9757 9831 9859 92.05
0.5 59.37 68.31 74.05 9650 97.66 98.34 82.37
1.0 64.31 55.27 57.12 9537 97.08 9793 77.85
2.0 68.00 57.40 57.86 9541 97.04 97.87 78.93
4.0 68.19 5794 58.12 9553 97.00 97.85 79.11
5.0 69.68 59.40 59.26 9748 98.02 98.87 80.45

As max norm constraint 1, adversarial transferability first 7 then |

26
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¥ Model Complexity

Sparse Softmax cross-entropy loss [1]
— Less model complexity

— Better adversarial transferability

Table 3. Transferability results of different attack methods across various target models. Bold entries indicate improved or top-performing

variants.
ResNet50 VGG16 MobileNetV2 InceptionV3 ViT-B16 PiT-B Visformer Swin-T
MI-FGSM 66.0 99.9 76.8 97.5 21D 53.8 88.9 66.7
MI-FGSM-S 68.9 99.7 79.2 99.1 39.0 54.5 90.6 68.1
SVRE 65.2 99.9 79.0 98.6 32.4 49.2 90.3 64.3
SVRE-S 66.9 99.9 81.2 98.9 34.2 51.3 93.0 65.9
SIA 972 100.0 98.4 99.7 759 91.9 90.0 96.1
SIA-S 98.1 100.0 98.2 99.6 79.2 93.2 99.5 97.5

[1] Martins, A. and Astudillo, R. From softmax to sparsemax: A sparse model of attention and multi-label classification. ICML 2016.
27



b Discussion

Machine Learning == Adversarial Transferability

» Generalization / Ensemble learning — Model ensemble attack
» Optimization — Attack algorithm

» “Key” models in the ensemble?
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