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Adversarial Example

4Credit to: Explaining and Harnessing Adversarial Examples. IJ Goodfellow et al. ICLR 2015.



Transferable Adversarial Attack
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Clean data

Transferable adversarial example

Surrogate model

Black-box model

Adversarial region

Decision boundary



Transferable Adversarial Model Ensemble Attack
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Data Surrogate models Perturbation Adversarial Example 



Statistical Learning Theory
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Generalization bound (Rademacher complexity): 

Generalization error Empirical error Model Complexity Sample Complexity



Motivation
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Statistical Learning Theory Transferable Adversarial Model Ensemble Attack 

More data More surrogate models

Independent data Diverse surrogate models 

Less complexity Less complexity 
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Notations
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 Data: 

 Label:

 Adversarial example:

 Model parameter:

 Model ensemble:  

 Model output: 

 Loss function: 

and



Model Ensemble Adversarial Attack
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 Population risk:

 Empirical risk:

 The most transferable adversarial example:

 Adversarial example: 



Transferability Error
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 Always non-negative

 TE↓, adversarial transferability↑

Let Population risk ≈ Empirical risk



Diversity of Model Ensemble Attack
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Tiger

0.9

0.7

0.8 Diversity↑, Overfitting↓

 Suitable for multi-class classification

Idea: ensemble learning theory



Empirical Model Ensemble Rademacher Complexity
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Intuition: complexity of input space 

relative to the surrogate models.

 Simple input space:

 Complex input space:  ↑

Idea: empirical Rademacher complexity
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Vulnerability-diversity Decomposition
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Idea: bias-variance decomposition

Intuition: 

 Strong & diverse surrogate models

 Vulnerability-diversity trade-off



Ensemble Complexity of MLP
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Idea: Rademacher complexity bound

Intuition: 

 More surrogate models

 Reducing model complexity



Upper Bound of Transferability Error
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Idea: Uniform convergence bound

Proof: learning theory + information theory

Key takeaways: 

 More surrogate models

 Diverse surrogate models

 Reducing model complexity



Hellinger Integral
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An intuitive example in Appendix C.6 leads to the following bound:

Several cases of key models           :

1.  

2.  

3.  



Information-theoretic Analysis
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Key takeaways: 

 More surrogate models

 Diverse surrogate models

 Reducing model complexity
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Experimental Setup
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 Datasets: 

 Validation: MNIST, Fashion-MNIST, CIFAR-10

 Exploration: ImageNet

 Models: 

 Validation: MLP (1-3 layers), CNN (1-3 layers), ResNet-18

 Exploration: ResNet-50, VGG-16, MobileNet-V2, Inception-V3, 

ViT-B16, PiT-B, Visformer, Swin-T



Attack Dynamics
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 Vulnerability-diversity decomposition

 The trend of variance

 The potential complexity-diversity trade-off



Attack Dynamics
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Ensemble Framework
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Model Complexity
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As max norm constraint ↑, adversarial transferability first ↑ then ↓



Model Complexity
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Sparse Softmax cross-entropy loss [1]
→ Less model complexity
→ Better adversarial transferability

[1] Martins, A. and Astudillo, R. From softmax to sparsemax: A sparse model of attention and multi-label classification. ICML 2016.



Discussion
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Machine Learning        Adversarial Transferability

 Generalization / Ensemble learning → Model ensemble attack

 Optimization → Attack algorithm

 “Key” models in the ensemble?



Thank You!
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