



# SparseLoRA: Accelerating LLM Fine-Tuning with Contextual Sparsity

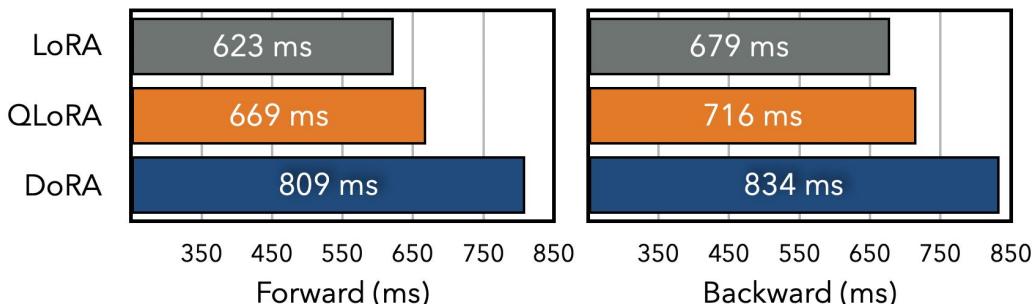
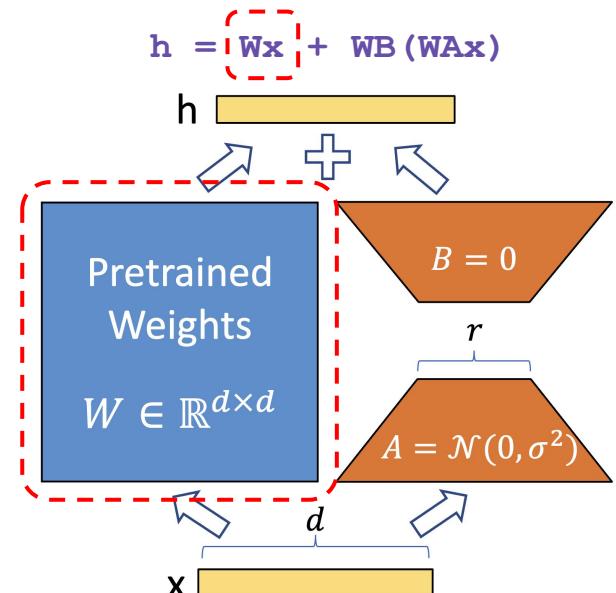
ICML 2025

**Samir Khaki<sup>\*1</sup>, Xiuyu Li<sup>\*2</sup>, Junxian Guo<sup>\*3</sup>, Ligeng Zhu<sup>3</sup>, Konstantinos N. Plataniotis<sup>1</sup>,  
Amir Yazdanbakhsh<sup>4</sup>, Kurt Keutzer<sup>2</sup>, Song Han<sup>3</sup>, Zhijian Liu<sup>3</sup>**

<sup>1</sup>University of Toronto <sup>2</sup>UC Berkeley <sup>3</sup>MIT <sup>4</sup>Google DeepMind

# LoRA Fine-tuning is not Fast

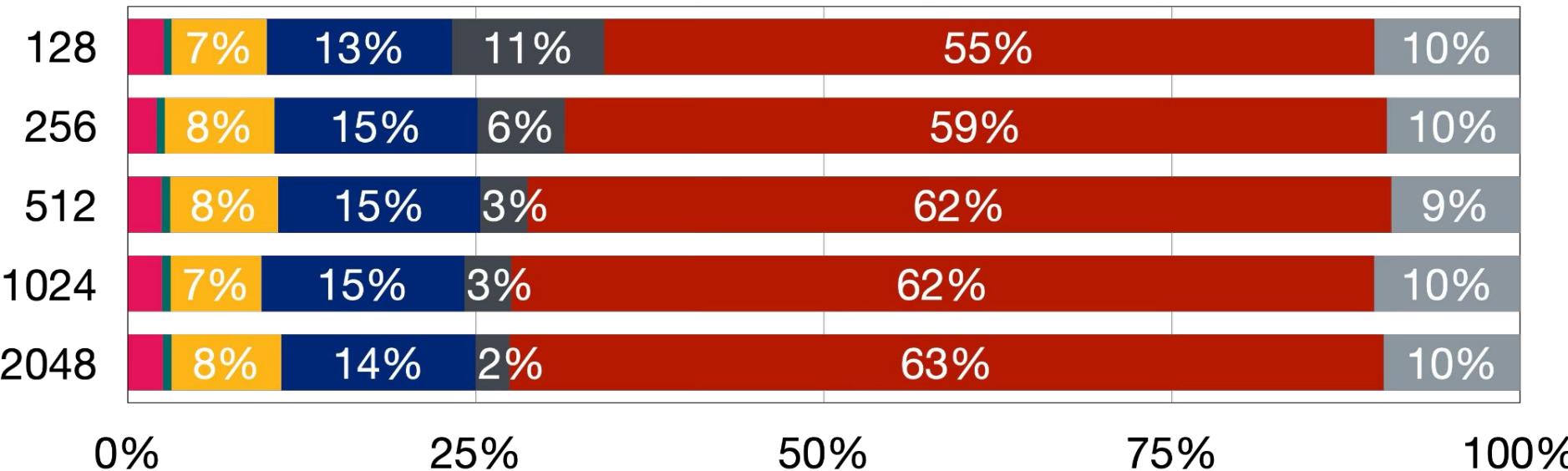
- Existing methods mainly aim to save memory
  - But have worse compute efficiency...



# What is the bottleneck?

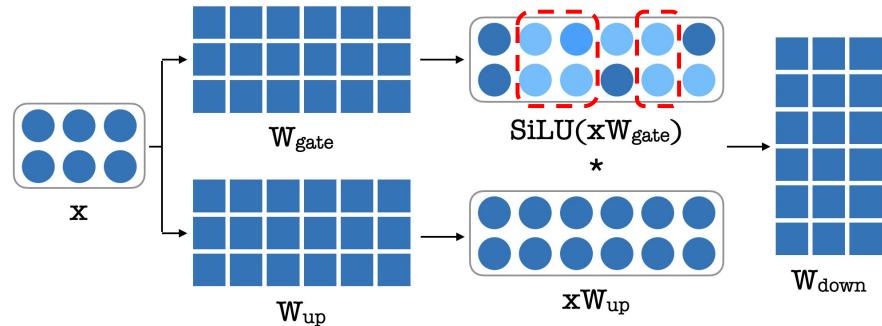
- Interestingly the Frozen Linear Layers bottleneck fine-tuning latency

Layer Norm    RoPE    LoRA    QKVO Proj    Attention    FFN    Other



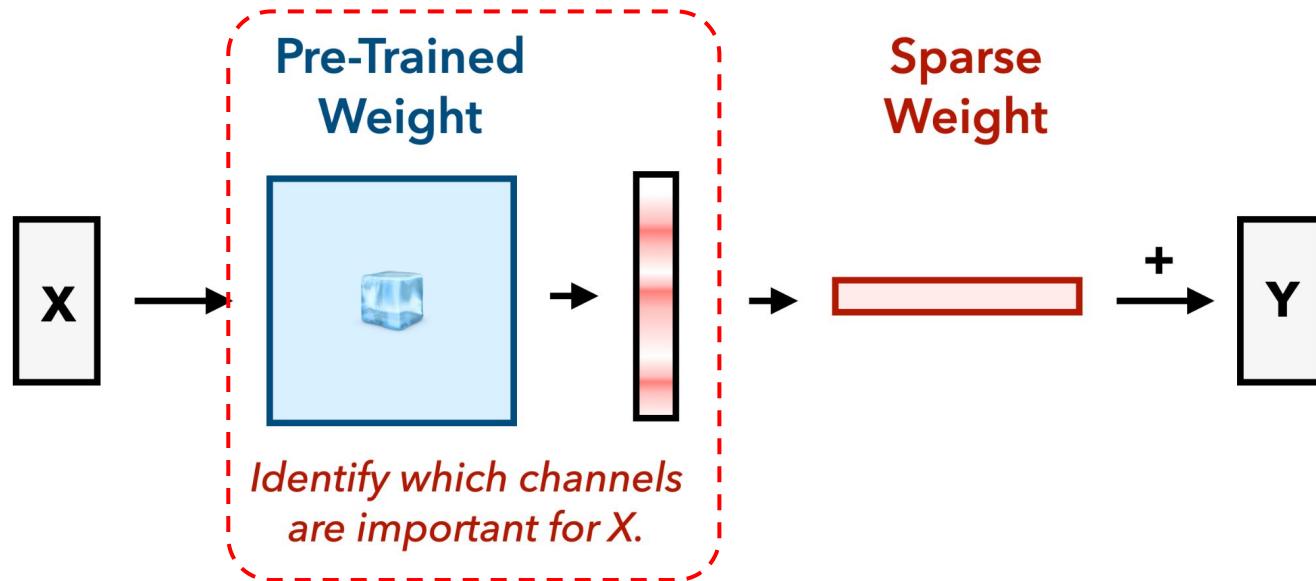
# Leveraging Contextual Sparsity in Fine-tuning

Identify existing sparsity in activations using L2 Norm for the given input during fine-tuning



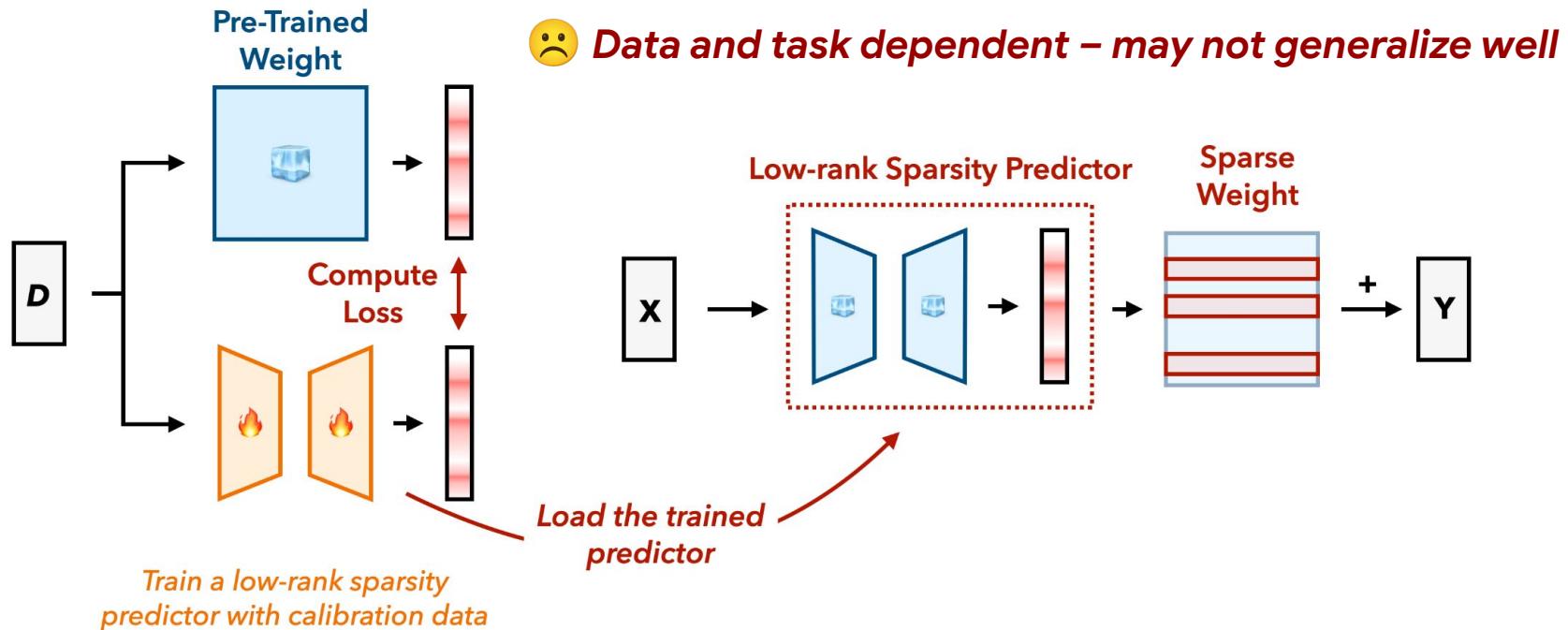
# Leveraging Contextual Sparsity in Fine-tuning

***Need to know the sparsity mask before going through the weight!***



# How to Identify Sparsity On the Fly?

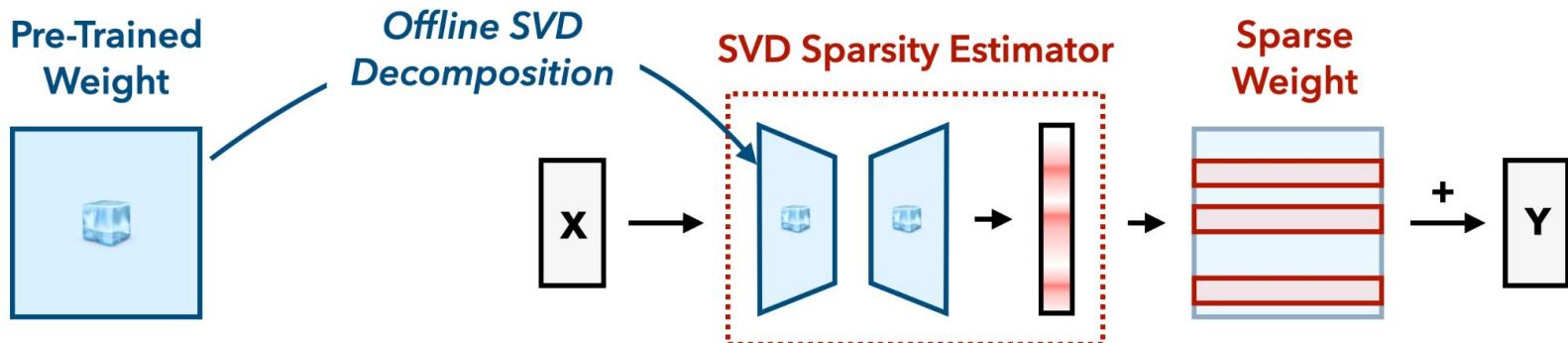
- Prior work: train a low-rank predictor for each layer to identify channels to prune



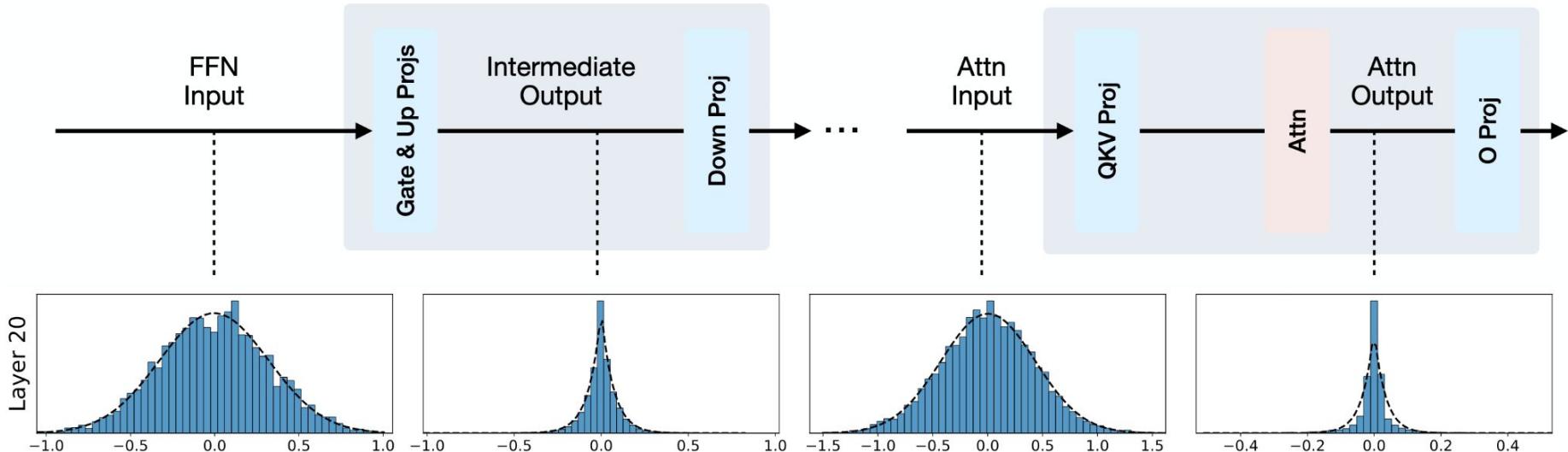
# How to identify sparsity on-the-fly?

- Our solution: use the top-k SVD of the model weights as the sparsity estimator

😊 *Data and task independent – simple & generalize!*



# Sparse Neuron Selection across Layers



- O projections inputs follow a Laplace distribution as well – can use L2 Norm
- QKV projections inputs follow a Normal distribution – L2 norm not applicable

# Sparse Neuron Selection on QK Projections

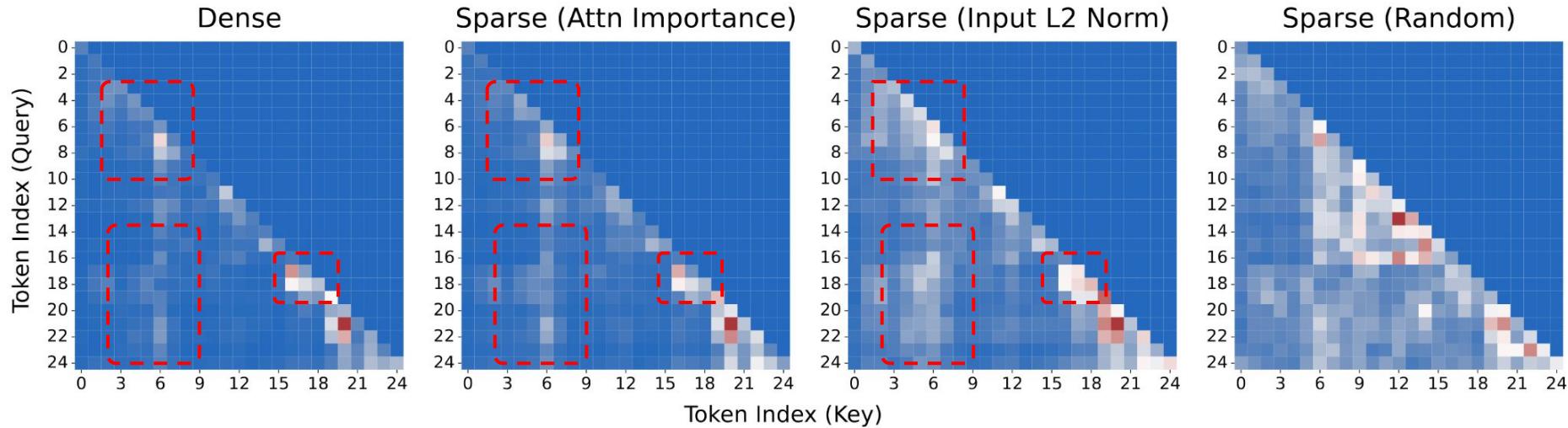
- **Attention scores guided criteria – sparsifying channels with minimal contributions**
  - Define a proxy metric that quantifies each channel's importance

$$\mathbf{q} = \|\mathbf{Q}\|_2, \quad \mathbf{k} = \|\mathbf{K}\|_2. \quad \mathbf{s} = \mathbf{q} \odot \mathbf{k}.$$

# Sparse Neuron Selection on QK Projections

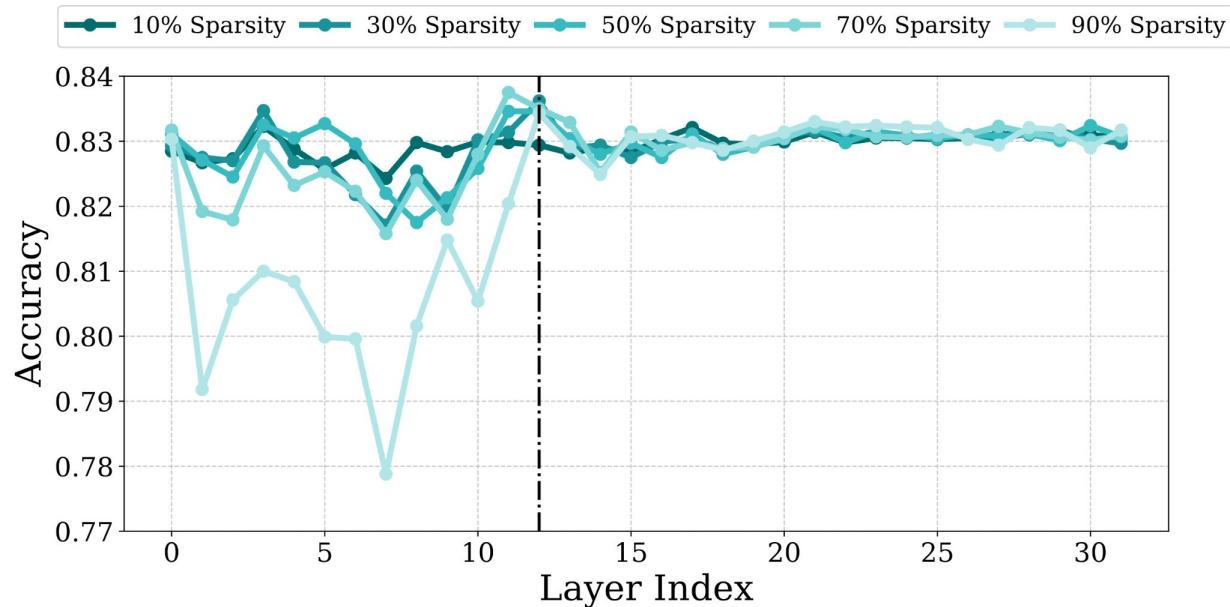
- **Attention scores guided criteria – sparsifying channels with minimal contributions**
  - Define a proxy metric that quantifies each channel's importance

$$\mathbf{q} = \|\mathbf{Q}\|_2, \quad \mathbf{k} = \|\mathbf{K}\|_2. \quad \mathbf{s} = \mathbf{q} \odot \mathbf{k}.$$



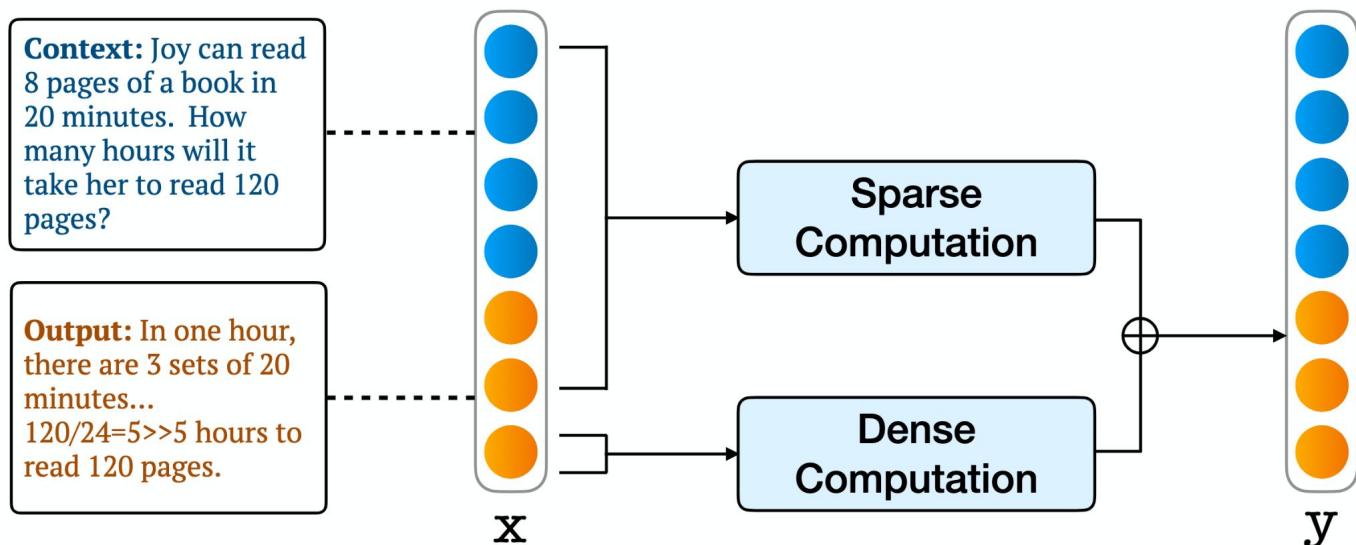
# Layer Sensitivity: Adaptive Sparsity Configuration

- The importance of individual layers and their contributions can differ substantially
  - Conduct systematic layer sensitivity analysis with one task subset
  - Derive a layer-specific sparsity configurations for optimal performance



# Token Sensitivity: Context-Output Aware Sparsity

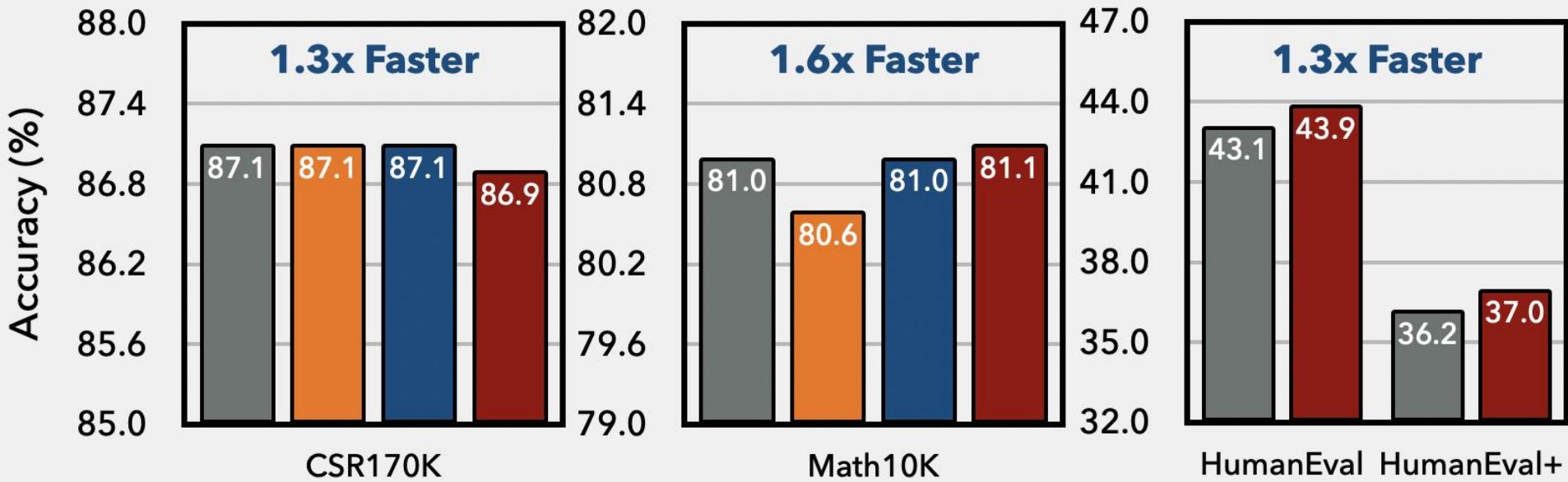
- Effectiveness of sparsity varies across tokens within a sequence
  - All **context** tokens (the prefix tokens provided as input) are insensitive to sparsity
  - Some **output** tokens (the target tokens for loss computation) should be kept dense



# Results

SparseLoRA maintains **lossless performance** on Math Reasoning & Code Generation and achieves up to **1.6x speedup** (on LLaMA3-8B)

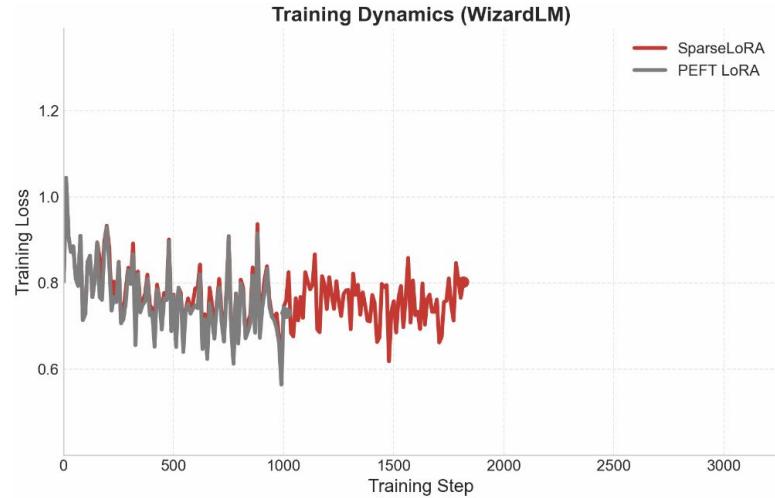
■ LoRA ■ QLoRA ■ DoRA ■ SparseLoRA



# SparseLoRA unlocks faster training



🔥 **1.5x Faster** 🔥



🔥 **1.8x Faster** 🔥

**SparseLoRA accelerates PEFT LoRA**



# Results

**SparseLoRA** can be seamlessly combined with QLoRA,  
achieving both **lower memory consumption** and **improved runtime efficiency**

|                      | CSR170K |      |      | Math10K |      |      |
|----------------------|---------|------|------|---------|------|------|
|                      | #FL.    | Spd. | Acc. | #FL.    | Spd. | Acc. |
| LLaMA3-8B            | –       | –    | 62.5 | –       | –    | 33.5 |
| + QLoRA              | 100%    | 1.0× | 87.1 | 100%    | 1.0× | 80.6 |
| + <b>SparseQLoRA</b> | 65%     | 1.2× | 86.9 | 60%     | 1.3× | 80.8 |

Samir Khaki\*, Xiuyu Li\*, Junxian Guo\*, Ligeng Zhu, Konstantinos N. Plataniotis,  
Amir Yazdanbakhsh, Kurt Keutzer, Song Han, Zhijian Liu, Accelerating LLM  
Fine-Tuning with Contextual Sparsity, ICML 2025.



# Thank you!

<https://z-lab.ai/projects/sparselora>

Samir Khaki<sup>\*1</sup>, Xiuyu Li<sup>\*2</sup>, Junxian Guo<sup>\*3</sup>, Ligeng Zhu<sup>3</sup>, Konstantinos N. Plataniotis<sup>1</sup>, Amir Yazdanbakhsh<sup>4</sup>, Kurt Keutzer<sup>2</sup>, Song Han<sup>3</sup>, Zhijian Liu<sup>3</sup>