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LoRA Fine-tuning is not Fast

e Existing methods mainly aim to save memory h =IWx '+ WB(WAX)
o But have worse compute efficiency... ‘--
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What is the bottleneck?

e Interestingly the Frozen Linear Layers bottleneck fine-tuning latency
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Leveraging Contextual Sparsity in Fine-tuning
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Leveraging Contextual Sparsity in Fine-tuning

Need to know the sparsity mask before going through the weight!
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How to Identify Sparsity On the Fly?

e Prior work: train a low-rank predictor for each layer to identify channels to prune

Pre-Trained o
Weight = Data and task dependent — may not generalize well
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How to identify sparsity on-the-fly?

e Our solution: use the top-k SVD of the model weights as the sparsity estimator

O Data and task independent — simple &
generalize!
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Sparse Neuron Selection across Layers
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O projections inputs follow a Laplace distribution as well — can use L2 Norm
QKYV projections inputs follow a Normal distribution — L2 norm not applicable




Sparse Neuron Selection on QK Projections

e Attention scores guided criteria - sparsifying channels with minimal contributions
o Define a proxy metric that quantifies each channel’s importance

q=1[Qllz, k=|K[.. s=qOk.



Token Index (Query)

Sparse Neuron Selection on QK Projections

e Attention scores guided criteria - sparsifying channels with minimal contributions
o Define a proxy metric that quantifies each channel’s importance

qa=Qll2, k=Kl
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Layer Sensitivity: Adaptive Sparsity Configuration

e The importance of individual layers and their contributions can differ substantially
o Conduct systematic layer sensitivity analysis with one task subset
o Derive a layer-specific sparsity configurations for optimal performance
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Token Sensitivity: Context-Output Aware Sparsity

e Effectiveness of sparsity varies across tokens within a sequence
o All context tokens (the prefix tokens provided as input) are insensitive to sparsity
o Some output tokens (the target tokens for loss computation) should be kept dense

Context: Joy can read
8 pages of a book in
20 minutes. How
many hours will it
take her to read 120

pages?
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Output: In one hour,
there are 3 sets of 20
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Accuracy (%)

Results

SparseLoRA maintains lossless performance on Math Reasoning & Code Generation
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and achieves up to 1.6x speedup (on LLaMA3-8B)
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SparseLoRA unlocks faster training
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Results

SparseLoRA can be seamlessly combined with QLORA,
achieving both lower memory consumption and improved runtime efficiency

CSR170K Math10K
#FL. Spd. Acc. #FL. Spd. Acc.
LLaMA3-8B - - 625 — - 335
+ QLoRA 100% 1.0x 87.1 100% 1.0x 80.6

+ SparseQLoRA 65% 1.2x 869 60% 1.3x 80.8
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Thank you!

https://z-lab.ai/projects/sparselora
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