A Mathematical Framework for Al-Human Integration in Work

L. Elisa Celis
Yale University

Lingxiao Huang Nanjing University Nisheeth K. Vishnoi Yale University

How can we compare workers—human, AI, or both—on the same job?

ICML 2025

Paper: https://arxiv.org/abs/2505.23432

Motivation and Related Work

GenAl tools like GPT-4 and Gemini are transforming tasks: summarization, code, writing (OpenAl, 2023; DeepMind, 2023)

Dario Amodei — CEO of Anthropic, one of the world's most powerful creators of <u>artificial intelligence</u> — has a blunt, scary warning for the U.S. government and all of us:

AI could wipe out half of all entry-level white-collar jobs — and spike unemployment to 10-20% in the next one to five years, Amodei told us in an interview from his San Francisco office.

AI could replace equivalent of 300 million jobs - report

29 March 20

Share < Save 🔲

Can GenAl enhance workers—or only replace them?

Empirical studies:

- [Brynjolfsson et al. 2023]: GenAl boosts productivity, esp. for junior workers
- [Vaccaro et al. 2024]: Gains vary by task type—stronger in content than decision tasks
- [Jaffe et al. 2024]: Human-Al collaboration helps, but depends on complementarity

But missing:

- A formal model of jobs and worker-Al fit
- A framework that explains why gains happen and when they fail

Why Evaluations Fail — An Example

Job structure is underspecified

Example: O*NET

A comprehensive database, maintained by the U.S. Department of Labor, provides standardized descriptions of >1000 jobs

Computer Programmers

Tasks

✓ 5 of 17 displayed

- Write, analyze, review, and rewrite programs, using workflow chart and diagram, and apply symbolic logic.
- Correct errors by making appropriate changes and rechecking the program to ensure that I
- Perform or direct revision, repair, or expansion of existing programs to increase operating

Skills

✓ 5 of 18 displayed

- Programming Writing computer programs for various purposes.
- Active Listening Giving full attention to what other people are saying, taking time to un
 appropriate, and not interrupting at inappropriate times.
- Omplex Problem Solving Identifying complex problems and reviewing related information

Browse by Cross-Functional Skills

Challenges:

- How tasks depend on skills?
- How to evaluate performance at the level of a skill, task, job

Human eval conflate subskills

Example: KPI

Problems:

- Subskills Involved:
 - 🕝 Diagnose (reasoning)
 - K Fix + test code (execution)
- Same score ≠ same skills
- Failures are uninterpretable

Challenges:

- Conflate reasoning with execution
- Lack of standardization
- Obscure where intervention is needed for upskilling

Al benchmarks eval isolated skills

Example: Big-Bench Lite

```
x = 5
y = 3
z = 2
x = y + x
What is the value of x at line 3?
Expected output:
```

_

What's missing:

- No diagnosis, prioritization, or multi-step task context
- No way to assess judgment or adaptation
- · No notion of job-level success

Challenges:

- Al is evaluated on fragments
- Statistical noise in evaluation

Our Contributions

1. A unified framework for modeling and measuring job fit

- Represents jobs as task-skill dependency graphs
- Models worker ability via decision- and action-level subskills
- Captures performance using probabilistic ability profiles
- Computes job success probability from noisy subskill draws
- Enables comparison across humans, Al systems, and hybrids

2. Theoretical insights

- **Phase transition**: small improvements \rightarrow big jumps in success
- Merging theorem: combining complementary workers can outperform individuals GenAl enhance, no replace!
- Explains "productivity compression" via Al assistance

3. Empirical use cases

- Framework's usability via data derived from
 O*NET (human jobs) and Big-Bench Lite (GenAl tools)
- Explains human-Al partnership gains
- Informs training, upskilling, and hiring strategies

A Probabilistic Model of Job Success

Job = collection of tasks

Each task is associated with a collection T_i of multiple skills

Key idea: Each skill decomposed into 2 subskills: decision v.s. action [Kahneman 2011, Inga et al. 2023]

E.g. "coding" involves both "solving the problem" (decision-level) and "implementing a solution in a language" (action-level)

Like from O*NET, each subskill is associated with a difficulty in [0,1] 0: easiest, 1: hardest

We model a worker by two ability profiles: (α_1, α_2)

- α_1 : decision-level subskills
- α_2 : action-level subskills

 $\alpha(s)$ maps subskill difficulty $s \in [0,1]$ to a probability distribution over [0,1]

Each draw from $\alpha(s)$ gives performance on that subskill

 $\alpha(s)$ contain two parts: an average ability $E(s) \in [0,1]$ and an additive stochastic noise term $\varepsilon(s)$ (subskill independent)

Linear: E(s) = 1 - (1 - a)s, fitting [BIG bench authors 2023]

Noise models: Uniform / Truncated normal

Job success metrics

Subskill level

• Random subskill error rate $\zeta_{j\ell}=1-X$ where $X\sim\alpha_\ell(s_{j\ell})$, representing failure probability

Skill level

- Aggregates subskill errors ζ_{j1} and ζ_{j2} to an overall skill error rate via $h: [0,1]^2 \to [0,1]$
- E.g., h(a,b) = (a+b)/2

Task level

 Each task T_i depends on multiple skills. Aggregate skill errors via: g: [0,1]* → [0,1]

Job level

• Aggregate task errors via a job error function $f: [0,1]^m \to [0,1]$

Job-worker fit metric

- Define overall error: $\operatorname{Err}(\zeta) \coloneqq f(g\left(\{h(\zeta_{j1},\zeta_{j2})\}_{j\in T_i,i\in[n]}\right))$
- Job success probability:

$$P \coloneqq \Pr_{\zeta}[\operatorname{Err}(\zeta) \le \tau]$$

Theoretical Results

Fix a job profile (task-dependency T_i , subskill difficulties $S_{i\ell}$, job error Err, threshold τ)

Analyzing job-worker fit: phase transition

Theorem: Let $\mathrm{Err}(\zeta) = \frac{1}{2n} \sum_j (\zeta_{j1} + \zeta_{j2})$, $s_{j\ell} \sim \mathrm{Unif}[0,1]$. Suppose $\alpha_\ell(s)$ is linear ability profile with ability parameter a_ℓ and noise rate σ . Fix a_2 , σ and θ . Then, increasing a_1 by an amount of $\gamma_1 = \sigma \sqrt{\ln(1/\theta)/n}$ increases P from θ to $1-\theta$

Implications:

- Small changes in ability parameter can cause sharp jumps in job success. Transition window γ_1 depends on the choice of job and ability profiles
- Helps explain emergence of GenAl's power
- · Biased ability evaluations may be exclusionary

Analyzing human-Al partnership

Whether and when the success prob. of best-merged worker is (significantly) higher than W_A and W_B ?

Theorem: If $a_1^{(A)} \geq a_1^{(B)} + \sigma \sqrt{\ln(1/\theta)/n}$ and $a_2^{(B)} \geq a_2^{(A)} + \sigma \sqrt{\ln(1/\theta)/n}$. Then best-merged worker has job-success probability $\geq 1 - \theta$ while both W_A and W_B have job-success probability $\leq \theta$

Implications:

- Merging two workers with complementary skills can result in a significant performance gain
- Capture human-Al partnership, where human excels in decision and GenAl excels in action
- Productivity compression effect [Brynjolfsson et al.]

Thresholds and complementarity reshape how we think about skill, success, and augmentation

Empirical Results

Framework's usability (Computer Programmer)

Deriving job data (from O*NET):

- Descriptions of n = 18 skills and m = 17 tasks
- Proficiency levels $s \in [0,1]$ for each skill
- Skill and task importance scores, inform the choice of error function Err being "weighted average"
- Developing new methods for task-skill dependency graph and subskill division

Deriving workers' abilities (from Big-bench Lite):

 Model abilities of both human and GenAl by linear ability + truncated normal noise

Skill id	Skill name	Importance $(w\%)$	Proficiency $(s\%)$	Decomposition (λ)	Decision (s_{i1})	Action (s_{i2})
1	Coordination	50	41	0	0	0.41
2	Social Perceptiveness	53	43	0	0	0.43
3	Mathematics	53	45	1	0.45	0
4	Time Management	53	45	1	0.45	0
5	Monitoring	50	45	1	0.45	0
6	Systems Analysis	60	45	0.6	0.27	0.18
7	Judgment and Decision Making	56	46	0.7	0.322	0.138
8	Writing	56	46	0.4	0.184	0.276
9	Active Learning	56	46	0.4	0.184	0.276
10	Speaking	53	48	0	0	0.48
11	Quality Control Analysis	63	50	0.3	0.15	0.35
12	Reading Comprehension	60	50	1	0.5	0
13	Systems Evaluation	53	52	1	0.52	0
14	Operations Analysis	53	54	0.6	0.324	0.216
15	Complex Problem Solving	69	55	0.7	0.385	0.165
16	Critical Thinking	69	55	0.6	0.33	0.22
17	Active Listening	69	57	0	0	0.57
18	Programming	94	70	0.4	0.28	0.42

Data from O*NET

Subskill division (new)

Robustness of theoretical results

Phase transition with dependent subskills

- In practice, a worker's current state may influence their abilities, creating dependencies between $\zeta_{i\ell}$
- Introduce dependency $p \in [0,1]$ 0: independent

Observation: Sharp thresholds confirmed (smoother)

Merging improves success with distinct profiles

- Human: linear v.s. GenAl: constant $(E(s) \equiv c)$
- Each subskill handled by higher-ability one

Observations:

- Non-identical merging works, brings a sharp prob. gain Δ
- Transition is smoother (narrow bright region in heatmap)

Our model predicts success, explains gaps, and guides augmentation across humans and Al

Takeaways, Summary, and Future Work

1. Jobs are layered

 Skills are not flat collections of tasks. They are layered systems of judgment and execution

2. Success is structured, not smooth

 Our model reveals sharp thresholds: Small upskilling in ability can dramatically boost outcomes

3. Augmentation, not replacement

 Humans and Al have complementary strengths: Al reduces execution noise and humans provide strategic adaptation. Our metric quantifies when teams outperform individuals

4. Train to decide, not just to do

• Upskilling must focus on decision-level abilities: framing problems, evaluating tradeoffs, etc.. These are harder to automate—and more valuable.

5. Measure what matters

 Traditional evaluation systems flatten talent. Our model enables fine-grained assessment and targeted support, unlocking hidden potential and informing better design of institutions.

Summary

- We introduced a probabilistic model of worker performance
- · Incorporated decision- and action-level subskills
- Defined a success probability metric for any jobworker pairing
- Showed theoretical phenomena: phase transitions, probability gain by merging
- Showed usability with data derived from O*NET and Big-Bench Lite

Limitations and future work

- Extend beyond job success by integrating additional factors (e.g., efficiency, time, cost) of worker-job fit
- Use more complex benchmarks (e.g., HumanEval) to better reflect real-world task difficulty
- Refine models, draw on behavioral insights, and design for equitable human-Al collaboration ...