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How can we compare workers—human, Al, or both—on the same job?
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Motivation and Related Work

GenAl tools like GPT-4 and Gemini are transforming tasks: summarization, code, writing
(OpenAl, 2023; DeepMind, 2023)
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Dario Amodei — CEO of Anthropic, one of the world's most powerful creators of artificial
intelligence — has a blunt, scary warning for the U.S. government and all of us:

Al could replace equivalent of 300
million jobs - report

20 March 2023 Share = save []

e Al could wipe outjhalf of all entry-level white-collar jobs|— and spike unemployment tcl 10-
in the next one to five years, Amodei told us in an interview from his San Francisco
office.

Can GenAl enhance workers—or only replace them?

Empirical studies:

* [Brynjolfsson et al. 2023]: GenAl boosts productivity, esp. for junior workers

* [Vaccaro et al. 2024]: Gains vary by task type—stronger in content than decision tasks
* [Jaffe et al. 2024]: Human-Al collaboration helps, but depends on complementarity

But missing:
* A formal model of jobs and worker-Al fit
* A framework that explains why gains happen and when they fail



Why Evaluations Fail — An Example

Job structure is underspecified

Example: O*NET

Computer Programmers
15-1251.00

Tasks
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© Write, analyze, review, and rewrite programs, using workflow chart and diagram, and apply
symbolic logic.

© Correct errors by making appropriate changes and rechecking the program to ensure that 1
© Perform or direct revision, repair, or expansion of existing programs to increase operating «

Skills
v 5of 18 displayed

© Programming — Writing computer programs for various purposes.

© Active Listening — Giving full attention to what other people are saying, taking time to un
appropriate, and not interrupting at inappropriate times.

© Complex Problem Solving — Identifying complex problems and reviewing related informe
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Challenges:
.

* How tasks depend on skillsg

How to evaluate performance at
the level of a skill, task, job

Human eval conflate subskills

Example: KPI

KPI Dashboard

Assigned Task

Fix 20 bugs per week

KPI

18 /|20 = 90%
Problems:

* Subskills Involved:
- @ Diagnose (reasoning)
. Fix + test code (execution)

* Same score # same skills

* Failures are uninterpretable

Challenges:

* Conflate reasoning with
execution

* Lack of standardization

* Obscure where intervention is
needed for upskilling

Example: Big-Bench Lite
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What is the value of x at line 3?

Expected output:

What’s missing:

* No diagnosis, prioritization, or
multi-step task context

* No way to assess judgment or
adaptation

* No notion of job-level success

Challenges:
* Al is evaluated on fragments

» Statistical noise in evaluation

Al benchmarks eval isolated skills



Qur Contributions

Empirical use cases

A unified framework for modeling and measuring job fit

Represents jobs as task-skill dependency graphs

Models worker ability via decision- and action-level subskills
Captures performance using probabilistic ability profiles
Computes job success probability from noisy subskill draws
Enables comparison across humans, Al systems, and hybrids

Theoretical insights

Phase transition: small improvements — big jumps in success
Merging theorem: combining complementary workers can
outperform individuals — GenAl enhance, no replace!
Explains “productivity compression” via Al assistance

Framework’s usability via data derived from

O*NET (human jobs) and Big-Bench Lite (GenAl tools)
Explains human-Al partnership gains

Informs training, upskilling, and hiring strategies
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Model job via O*NET  Model workers via Big-bench
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New subskill division Expert

A unified framework to analyze and improve job performance across human, Al, and hybrid workers



A Probabilistic Model of Job Success

Job = collection of tasks

Each task is associated with a
collection T; of multiple skills

Key idea: Each skill decomposed
into 2 subskills: decision v.s. action
[Kahneman 2011, Inga et al. 2023]

E.g. “coding” involves both “solving
the problem” (decision-level) and
“implementing a solution in a
language” (action-level)

Like from O*NET, each subskill is

associated with a difficulty in [0,1]
O: easiest, 1: hardest

Job
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We model a worker by two
ability profiles: (a4, @)

* «: decision-level subskills
* ,: action-level subskills

a(s) maps subskill difficulty s €
10,1] to a probability
distribution over [0, 1]

Each draw from a(s) gives
performance on that subskill

«(s) contain two parts: an
average ability E(s) € [0,1]
and an additive stochastic noise
term £(s) (subskill independent)

Linear: £(s) =1 — (1 — a)s,
fitting [BIG bench authors 2023]

Noise models: Uniform /
Truncated normal

a(s)

Job success metrics

Subskill level

* Random subskill error rate {j, =
1 — X where X ~ a,(sjp),
representing failure probability

Skill level

* Aggregates subskill errors {;; and
(i to an overall skill error rate via

h:[0,1]% - [0,1]
« Eg., h(a,b) = (a + b)/2

Task level

* Each task 7; depends on multiple
skills. Aggregate skill errors via:

g:10,1]* = [0,1]

Job level
* Aggregate task errors via a job

error function f:[0,1]" — [0,1]
Job-worker fit metric
* Define overall error: Err(({) =

f(g <{h(cfl’<j2)}jeuie[n] )
* Job success probability:
P := Pr¢[Err({) < 7]



Theoretical Results

Fix a job profile (task-dependency T;, subskill difficulties sjp, job error Err, threshold T)

Analyzing job-worker fit: phase transition

1
Theorem: Let Err({) = Ezf((jl + {j2), Sje ~

Unif[0,1]. Suppose ,(s) is linear ability profile

with ability parameter a, and noise rate 0. Fix a,,0

and 0. Then, increasing a; by an amount of y; =
0+/In(1/6)/n increases P from 6 to 1 — 0

Implicqﬁons:
* Small changes in ability parameter can cause sharp

jumps in job success. Transition window ; depends
on the choice of job and ability profiles

* Helps explain emergence of GenAl’s power

* Biased ability evaluations may be exclusionary

Plots of P vs. a; for various o
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Analyzing human-Al partnership

Decision ai ) Action aé ) Decision ai ) Action ag )
WAB WBA
Decision ai ) Action aé ) Decision ai ) Action ag )

Whether and when the success prob. of best-merged
worker is (significantly) higher than W, and Wg?2

Theorem If ag ) > agB) +0,/In(1/60)/n and a( ) >
) + 0+/In(1/6)/n. Then best-merged worker has

job-success probability = 1 — & while both W, and
W5 have job-success probability < 6

Implications:

. Mer?ing two workers with complementary skills can
result in a significant performance gain

* Capture human-Al partnership, where human excels in
decision and GenAl excels in action

* Productivity compression effect [Brynjolfsson et al.]

Thresholds and complementarity reshape how we think about skill, success, and augmentation



Empirical Results

Framework’s usability (Computer Programmer)
Deriving job data (from O*NET):
* Descriptions of . = 18 skills and m = 17 tasks

* Proficiency levels s € |0,1] for each skill

* Skill and task importance scores, inform the choice

of error function Err being “weighted average”

* Developing new methods for task-skill dependency

graph and subskill division

Deriving workers’ abilities (from Big-bench Lite):

* Model abilities of both human and GenAl by
linear ability + truncated normal noise

SKill id Skill name Tmportance (w%) | Proficiency (s%) | Decomposition () | Decision (s;;) | Action (s;3)

50 41 0 0 0.41

53 43 0 0 0.43

0.45 [i]

1
53 45 1 0.45 0
1

60 45 0.6 0.27 0.18

56 46 0.7 0.322 0.138

56 46 0.4 0.184 0.276

56 46 0.4 0.184 0.276

53 48 0 0 0.48

63 50 0.3 0.15 0.35
5

53 52 1 0.52 0

53 54 0.6 0.324 0.216

69 55 0.7 0.385 0.165

Complex Problem

69 55 0.6 0.33 0.22

Cri 1 Th i
is 69 57 0 0 0.57

94 70 0.4 0.28 0.42

T T
Data from O*NET

Subskill division (new)

Robustness of theoretical resulis

Phase transition with dependent subskills

* In practice, a worker’s current state may influence
their abilities, creating dependencies between (;,

* Introduce dependency p € [0,1] O: independent

Plots of P v.s. a for various p Plots of P v.s. p for various a
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Observation: Sharp thresholds confirmed (smoother)
Merging improves success with distinct profiles

* Human: linear v.s. GenAl: constant (E(s) = ¢)

* Each subskill handled by higher-ability one

Observations:

* Non-identical merging works,
brings a sharp prob. gain A

* Transition is smoother (narrow
bright region in heatmap) "

(b) Heatmap of A

Our model predicts success, explains gaps, and guides augmentation across humans and Al



Takeaways, Summary, and Future Work

1. Jobs are layered Summary

* Skills are not flat collections of tasks. They are * We introduced a probabilistic model of worker
layered systems of judgment and execution performance

2. Success is structured, not smooth * Incorporated decision- and action-level subskills

* Our model reveals sharp thresholds: Small upskilling | * Defined a success probability metric for any job-
in ability can dramatically boost outcomes worker pairing

3. Augmentation, not replacement * Showed theoretical phenomena: phase transitions,

* Humans and Al have complementary strengths: Al probability gain by merging

reduces execution noise and humans provide * Showed usability with data derived from O*NET
strategic adaptation. Our metric quantifies when and Big-Bench Lite
teams outperform individuals

4. Train to decide, not just to do Limitations and future work

* Upskilling must focus on decision-level abilities: e Extend beyond job success by integrating

framing problems, evaluating tradeoffs, etc.. These additional factors (e.g., efficiency, time, cost) of
are harder to automate—and more valuable. worker-job fit

5. Measure what matters * Use more complex benchmarks (e.g., HumanEval)

- . to better reflect real-world task difficulty
* Traditional evaluation systems flatten talent. Our

model enables fine-grained assessment and * Refine models, draw on behavioral insights, and
targeted support, unlocking hidden potential and design for equitable human-Al collaboration ...

informing better design of institutions.

Thank you!



