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Introduction

- Current causal discovery approaches require restrictive model 
assumptions to ensure identifiability, e.g. additive noise (ANM). 
In real-world data these restrictive assumptions are commonly 
violated, losing identifiability guarantees. 	
	
- Bayesian model selection has been proven to improve 
performance in the bivariate case by allowing more flexible 
functional assumptions.	
 	
- However, the naive discrete Bayesian model selection approach 
isn't feasible for the multivariate case where the number of 
possible graphs scales super-exponentially. 	
	
- We propose a continuous Bayesian model selection 
approach that scales well to large numbers of variables while 
still allowing more flexible functional assumptions.  

Bayesian model selection solves this problem

- Factorised prior on distributions encodes the independent 
mechanism (ICM) assumption.	
	
- The marginal likelihood will prefer models whose ICM 
assumption aligns with the properties of the data generating 
process.	
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- CGP-CDE outperforms ANM methods on ANM and non-ANM 
data. 	
	
- Causal Gaussian process (CGP), which has ANM assumption, 
does well, showing the benefit of Bayesian model selection.

Probability of error Is performance on identifiable data worse?

Causal Gaussian Process Conditional Estimator (CGP-CDE)

Experiments on Erdos-Renyi (ER) graphs.

Aim: given a set of variables, find the causal graph. X1 X2 X3
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Fit a Gaussian process conditional 
estimator (GP-CDE) for each variable. 
Latent variable  allows non-Gaussian 
and heteroskedastic densities.	

The causal graph is extracted 
from the graph parameters 
via thresholding.

The ARD properties of the kernel mean 
edges that aren't evidenced by the 
data are "switched off" by making the 
graph parameter small.	

Loss:	

An adjacency matrix is constructed 
from the graph parameters (inverse 
lengthscales).
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ANM model with maximum likelihood 	
	
	

	

Less restrictive model with maximum likelihood	
	
	
	

Bayesian model with marginal likelihood	
	
	
	

Figures from Dhir et al. 2024	
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Identifiable:	

Distinguishable:	

Unidentifiable:	

uniformly random
selected graph

- Excellent performance of discrete Bayesian model selection 
(DGP-CDE) shows the probability of error is small.	
 	
- The difference in performance between  CGP-CDE  and DGP-
CDE is due to the continuous relaxation in CGP-CDE. 

- Experiments on ER graphs with 4 expected edges per variable 
and 50 variables. The CGP-CDE outperforms the other models. 

- Experiments on Syntren dataset, derived from a gene regulatory 
network simulator which has 10 datasets of 20 nodes. The CGP-
CDE again outperforms the other models. 

How bad is the continuous approximation? 

Does it scale to large numbers of variables?

How well does it perform on semi-synthetic data? 
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