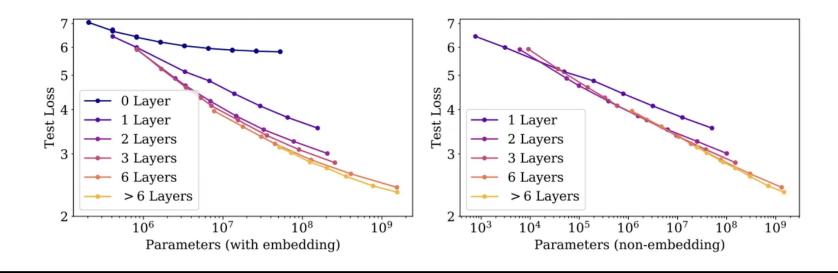


Enough of Scaling LLMs! Let's Focus on Downscaling

Yash Goel, Ayan Sengupta, Tanmoy Chakraborty

What is Model Scaling?

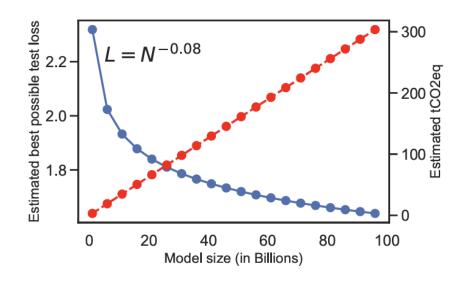


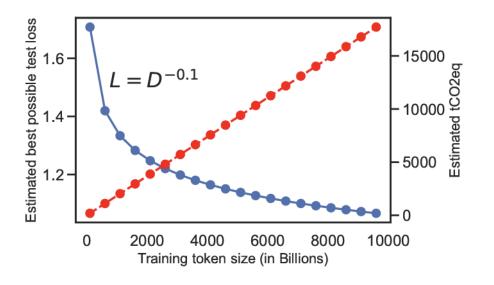
Scaling laws provide an analytical framework supporting that training a big neural network on a large dataset can lead to significantly low test error.

Past 4-5 years have seen an exponential growth in the number of scaling laws studies, predominantly for LLMs pretraining and fine-tuning.

Can We Scale Up Scaling Laws?

Widely adopted LLM pre-training scaling laws (Kaplan, Chinchilla) follow power-law $\approx D^{\alpha}N^{\beta}$, with the model size N and pre-training data size D.





Even for a sub-linear performance improvement, scaling laws suggest exponential increase in compute. 10% reduction in test-loss incurs >300% increase in compute.

Scaling Laws Beyond Chinchilla

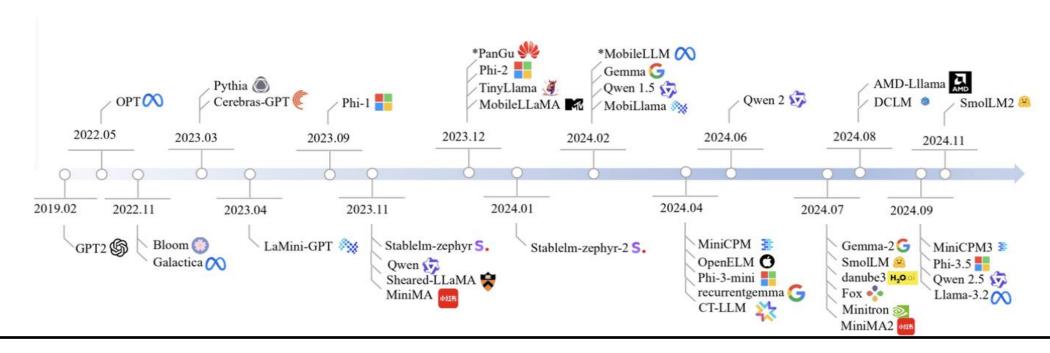
Recent works show that Kaplan/Chinchilla laws, which assume uniform scaling of model size and data, fail to account for:

Mixture granularity – Small, fine-grained experts outperform monolithic scaling

Inference-level scaling – more model calls don't always improve accuracy; optimal call count matters

Task-specific saturation – downstream performance saturate early, even if model scale increases

Rise of Small and Efficient Language Models



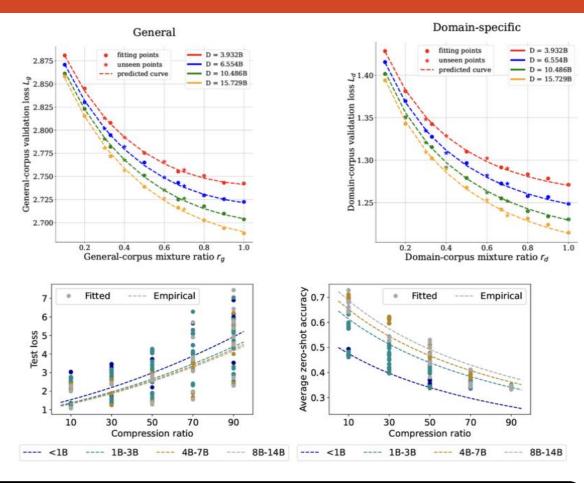
Development of small and efficient large pre-trained models have dramatically accelerated in recent 1-2 years, with SLMs exhibiting better performance-speedup trade-off.

Chinchilla scaling law suggests that SLMs can achieve better scaling with more pre-training data.

Why Do Small & Efficient Models Work?

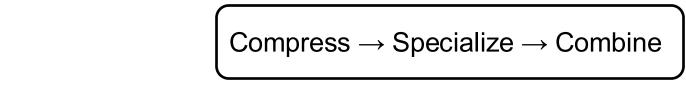
High-quality data is better than bigger data volume. Domain-specific continual pre-training is better than generic pre-training.

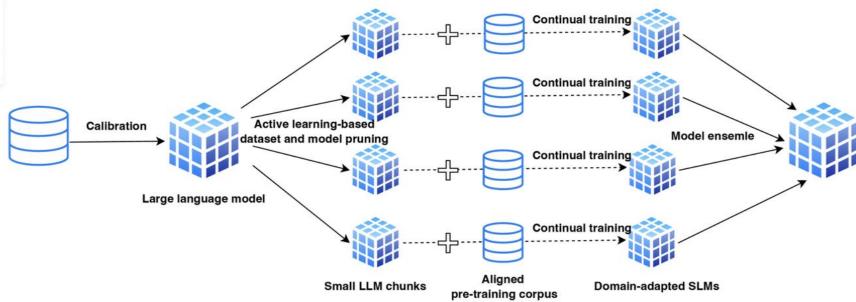
Better compression of knowledge



Knowledge distillation outperforms supervised pre-training when total compute stays below a model-size dependent threshold.

Downscaling for Better Trade-off





- 1. Prune models + data
- 2. Train on aligned domain data
- 3. Ensemble into unified system

Theoretical Guarantee of Downscaling Law

Theoretical guarantee can be derived from model compression, model ensemble and domain-adapted pretraining laws -

For $n \in \mathbb{Z}_+$ satisfying $\left(\frac{n^a-1}{n^a+\gamma}\right)(n-1)^{\gamma} \geq \frac{1}{bN_0^{\delta}}$, the expected ensemble loss $L_0 - b + \frac{b}{n^a} < L_0$, with N_0 being the model size of the original (uncompressed) model, L_0 being the test loss of the uncompressed model. a, b, γ, δ are fitting constants could be obtained from Lobacheva et al., and Chen at al.,

Example – Putting a = 0.83, b = 0.83, $\gamma = 1.08$, $\delta = 0.29$ for LLaMA-3-8B model, we obtain n > 7. i.e., for with 8 or more compressed models each with size < 1B, we can **achieve better test loss than the original LLaMA-8B model**.

Our Position: Why Downscaling Deserves the Spotlight

- Scaling is ecologically and economically unsustainable: The carbon cost for incremental
 performance gains grows nonlinearly with scale, threatening environmental goals and making largescale models increasingly inaccessible.
- Inequitable compute access limits research diversity: Continued scaling amplifies disparity;
 smaller, resource-constrained institutions are left behind unless we prioritize efficient small models.
- Overparameterization harms performance generality: Larger models often overfit niche domains, while carefully downscaled models can be more robust and adaptable to target tasks.
- **Downscaling accelerates research iteration:** Smaller models train faster and consume less compute, enabling rapid experimentation, debugging, and reproducibility.
- Encourages methodological innovation: Focusing on downscaling drives progress in pruning, quantization, KD, routing, and dataset efficiency, leading to richer modeling techniques than raw scale.