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What is Model Scaling?
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Scaling laws provide an analytical framework supporting that training a big neural network on a large dataset

can lead to significantly low test error.
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Past 4-5 years have seen an exponential growth in the number of scaling laws studies, predominantly for
LLMSs pretraining and fine-tuning.
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Can We Scale Up Scaling Laws?

Widely adopted LLM pre-training scaling laws (Kaplan, Chinchilla) follow power-law ~ D*N?, with the
model size N and pre-training data size D.
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Even for a sub-linear performance improvement, scaling laws suggest exponential increase in compute.
10% reduction in test-loss incurs >300% increase in compute.




Scaling Laws Beyond Chinchilla

Recent works show that Kaplan/Chinchilla laws, which assume uniform scaling of model size and data, fail
to account for:

Mixture granularity — Small, fine-grained experts outperform monolithic scaling

[Inference-level scaling — more model calls don’t always improve accuracy; optimal call count matters
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[Task-specific saturation — downstream performance saturate early, even if model scale increases




Rise of Small and Efficient Language Models

*PanGu % *MobileLLM OX)
_ ' Phi-2 B8 ~ Gemma & =1
, Pythia (@) " TinyLlama § " Qwen 1.5 4} ~ AMD-Lllama [
N -1 e " MobileLLaM Mot 8 24% 8
[,/ OPT |~ Cerebras-GPT _ Phi-1 g “MobileLLaMA I¥Z | MobiLlama 3 ~ Qwen 2 V7 | DCLM ® SmolLM2 #
[ ;
2022.05 2023.03 2023.09 2023.12 2024.02 2024.06 2024.08 202411
2019.02 2022.11 2023.04 202311 2024.01 2024.04 2024.07 2024.09
~Gp12@) | Bloom Q) LaMini-GPT # | Stablelm-zephyr S. Stablelm-zephyr-2 S. > MiniCPM E > Gemma-2G | MiniCPM3
Galactica () _ Qwenyy . OpenELM O SmolLM & | phi.3.5 5%
Sheared-LLaMA '@ \_Phi-3-mini 2% . danube3 041 | " Qwen 2.5 {7}
MiniMA M ._recurrentgemma G _ Fox % Llama-3.2 )
CT-LLM _;’r Minitron &
MiniMA2
4 )

Development of small and efficient large pre-trained models have dramatically accelerated in recent 1-2
years, with SLMs exhibiting better performance-speedup trade-off.
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Chinchilla scaling law suggests that SLMs can achieve better scaling with more pre-training data.

.




Why Do Small & Efficient Models Work?

High-quality data is better than bigger data volume.
Domain-specific continual pre-training is better than

generic pre-training.

Better compression of knowledge
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Knowledge distillation outperforms supervised pre-training when total compute stays below a model-size

dependent threshold.




Downscaling for Better Trade-off

[Compress — Specialize — Combine ]
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1. Prune models + data
2. Train on aligned domain data
3. Ensemble into unified system
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Theoretical Guarantee of Downscaling Law

[

Theoretical guarantee can be derived from model compression, model ensemble and domain-adapted pre-
training laws -

]
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Forn € Z, satisfying
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(na _1) (n—1)Y >

nary the expected ensemble loss L, — b + % < Ly, with N, being

the model size of the original (uncompressed) model, L, being the test loss of the uncompressed model.
\ 4, b, v, are fitting constants could be obtained from Lobacheva et al., and Chen at al.,
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Example — Putting a = 0.83,b = 0.83,y = 1.08, § = 0.29 for LLaMA-3-8B model, we obtain n > 7. i.e., for

with 8 or more compressed models each with size < 1B, we can achieve better test loss than the original

kLLaMA-8B model.
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Our Position: Why Downscaling Deserves the Spotlight

/Scaling is ecologically and economically unsustainable: The carbon cost for incremental \

performance gains grows nonlinearly with scale, threatening environmental goals and making large-
scale models increasingly inaccessible.

* Inequitable compute access limits research diversity: Continued scaling amplifies disparity;
smaller, resource-constrained institutions are left behind unless we prioritize efficient small models.

« Overparameterization harms performance generality: Larger models often overfit niche domains,
while carefully downscaled models can be more robust and adaptable to target tasks.

 Downscaling accelerates research iteration: Smaller models train faster and consume less
compute, enabling rapid experimentation, debugging, and reproducibility.

« Encourages methodological innovation: Focusing on downscaling drives progress in pruning,
Kquantization, KD, routing, and dataset efficiency, leading to richer modeling techniques than raw scaly
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