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So, you want to study social bias ... now what?

You might have the following questions:

« Which probe(s) should | select?

 What models should | test?

« What if two probes yield different results?

« Will my results generalize to real user behavior?
And yet, we lack:

1. Principled criteria for selecting appropriate probes

2. A system for reconciling conflicting results
3. Formal frameworks for reasoning about generalization

Our Contributions:

1. Provide a novel framework —Ecolevels - for selecting
appropriate probes

>> why this matters. presence and degree of bias may depend
on the probe you select

2. Show how our framework can help reconcile
conflicting results across probes

>> why this matters: conflicting results may signal mixed
evidence or highlight boundary conditions

3. Introduce strategies for reasoning about bias
generalization

>> why this matters. user harm is a large motivator for this work,
so understanding whether results will generalize is key

4. Review existing taxonomies and psychological
methods for studying human bias

>> why this matters: (a) existing taxonomies fail to solve the

problems outlined above and (b) many LLM probes were
modeled after human probes
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Ecolevels:
framework for bias probe selection & interpretation

Feature 1: Ecological Validity
How closely does the probe target the intended task?

Figure 2. Establishing probe-prompt alignment
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>> why this matters. researchers can draw the wrong conclusions
when the probe does not target the intended task

Feature 2: Abstraction Level
At what level is bias explored?

 Association-level

Semantic relationships that persist across tasks
(e.g., template-based, coreference resolution)

* Task-dependent decisions
Evaluate bias in specific decision-making contexts
(e.g., BBQ, CrowS-Pairs, BiasIinBios)

* Naturalistic Output

Probes that mimic real user behavior
(e.g., Reference Letter Generation)

>> why this matters. these levels enable clearer reporting of

results and generate hypotheses about conflicting findings and
blas generalization

Suggested Pipeline for Probe Selection

Step 1. Determine project scope

Single social group or across multiple groups?
Single domain or context (e.g., hiring) or across domains?

Step 2. Generate well-defined research question

Choose research question(s) that algin’'s with the project
scope (e.g., social bias vs. gender bias vs. gender-occ bias).

Step 3. Identify intended implications

Bias in underlying data (association-data) or real-world risks
(naturalistic output)?

Step 4. Select bias probe(s)

Choose probes that (1) fit project scope, (2) have strong
ecological validity, and (3) alignh with intended implications.

5 Lessons from the Social Sciences

1. Understand and probe the intended construct
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Position: Il defined constructs or poor probe-task alignment
lead to suboptimal probe selection.

2. Human constructs require translation

Position: Social science research is most useful when
translated to ML contexts (vs. directly borrowed).

3. Conflicting results refine theories

Position: Examining why findings conflict reveal when biases
do and don't emerge ("boundary conditions’). These patterns
can help refine theories about model design and training.

4. Design ‘no-lose’ experiments

Position: Design projects that are interesting regardless of
whether a significant or null effect emerges. For example:

(@) tests two competing theories;

(b) reconciles conflicting results in existing literature;

(c) compares human and machine data;

(d) explores differences across probes, languages, bias type,
models, model families, or layers within LLMSs;

(e) elucidates why a null finding emerged.

5. Visibility through specificity
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Ingredients for Future Work

Clear project Well-defined Standardized
scope constructs effect sizes

Well-defined Prompt-probe Comparisons

research questions alignment aCross probes

Ask me questions! knmorehouse@gmail.com
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