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Alignment for LLMs: Introduction ▷ Why Alignment Matters

Early Thoughts on AI Alignment

"A robot may not injure a human being or, through
inaction, allow a human being to come to harm."

— Isaac Asimov, 1942, Three Laws of Robotics

"Every degree of independence we give the machine
is a degree of possible defiance of our wishes."

— Norbert Wiener, 1949, The Machine Age
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Alignment for LLMs: Introduction ▷ Why Alignment Matters

Why Do We Need Alignment?
To achieve human purposes. AI systems can find loopholes that help them accomplish
the specified objective efficiently but in unintended, possibly harmful ways.

(b)(a)

Fig. 1. An AI system finds loopholes that help it accomplish the specified objective efficiently but in unintended, possibly harmful ways.
(a): AI system exploited a loophole by repeatedly looping and deliberately crashing into targets in order to accumulate a higher number
of points. (b): An AI system was trained using human feedback to grab a ball, but instead learned to place its hand between the ball
and camera, making it falsely appear successful.

.
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Alignment for LLMs: Introduction ▷ Why Alignment Matters

Why Do We Need Alignment?
To prevent existential risk. Unaligned AI systems have the potential to inflict harm
upon human society.

Fig. 2. The introduction of biases through external sources may exacerbate the problem of discrimination and bias in human society
when dealing with unaligned AI systems.
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Alignment for LLMs: Introduction ▷ Why Alignment Matters

Why Do We Need Alignment?

To avoid AI power seeking. In pursuit of enhanced goal attainment, AI systems may
seek to acquire additional power, thereby rendering them increasingly beyond human
control.

Fig. 3. Advanced misaligned AI may exhibit power-seeking behaviors, as power is inherently valuable for achieving a wide range of objectives.[1]

.
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Alignment for LLMs: Introduction ▷ Why Alignment Matters

Why Do We Need Alignment?

To pursue artificial general intelligence(AGI). Ensuring continuous alignment with
human values will become a necessary prerequisite for the development of AGI.

Fig. 4. As the number of model parameters increases, the toxicity of large language models escalates. While Prompt and Context
Distillation techniques can partially alleviate this issue, they do not provide a guarantee of alignment for AGI.[2]

.
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Alignment for LLMs: Introduction ▷ Why Alignment Matters

The Alignment Cycle

Fig. 5. The Alignment Cycle. (1) Forward Alignment (alignment training) produces trained systems based on alignment requirements; (2)
Backward Alignment (alignment refinement) ensures the practical alignment of trained systems and revises alignment requirements; (3) The
cycle is repeated until reaching a sufficient level of alignment.[3]
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Alignment for LLMs: Introduction ▷ Learning from Human Feedback

InstructGPT: The Birth of RLHF

InstructGPT (2022): OpenAI used Reinforcement Learning from Human Feedback
(RLHF)[4] to align GPT-3 with human intent.

Key Improvement: RLHF enables AI to understand user intent
instead of producing superficially related but useless content
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Alignment for LLMs: Introduction ▷ Learning from Human Feedback

What is RLHF?

Reinforcement Learning from Human Feedback
A paradigm shift in AI alignment: teaching AI systems to behave according to human values
through preference learning.

Traditional Approach:
Hard-code rules
Define explicit rewards
Specify exact behaviors

RLHF Approach:
Learn from preferences
Infer human values
Adapt to feedback

Why RLHF Matters
Solves the "alignment problem" - ensuring AI does what we want
Enables complex, nuanced behaviors that are hard to specify
Powers ChatGPT, Claude, and other aligned AI systems
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Alignment for LLMs: Introduction ▷ Learning from Human Feedback

Why do we need RLHF?
RLHF helps improve the overall quality and safety.

Fig. 6. Human evaluations of various models on the API prompt distribution, evaluated by how often outputs from each model were
preferred to those from the 175B SFT model. InstructGPT models (PPO-ptx) as well as its variant trained without pretraining mix
(PPO) significantly outperform the GPT-3 baselines (GPT, GPT prompted); outputs from 1.3B PPO-ptx model are preferred to those
from the 175B GPT-3 [4].

.
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Alignment for LLMs: Introduction ▷ Learning from Human Feedback

How RLHF Works?

Fig. 7. A diagram illustrating the three steps of RLHF [4].
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Alignment for LLMs: Introduction ▷ Learning from Human Feedback

How RLHF Works?

Key Components of RLHF
1 Supervised Fine-tuning (SFT): Initial policy πSFT
2 Reward Modeling: Learn Rϕ from human preferences
3 RL Fine-tuning: Optimize policy with PPO

The RLHF Objective:

max
π

Ex∼D,y∼π(·|x) [Rϕ(x , y)− β · DKL[π(y |x)||πSFT (y |x)]]

Rϕ(x , y): Learned reward model
β · DKL: Regularization to prevent reward hacking
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Alignment for LLMs: Introduction ▷ Learning from Human Feedback

RLHF’s Development: A Timeline

The Evolution of RLHF

Fig. 8. The timeline of the integration of various subfields into the modern version of RLHF [5].
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Alignment with Reward Models ▷ The Path to RLHF

Reward is Enough

The Reward Hypothesis [6]
“Intelligence, and its associated abilities, can be understood as subserving the maximisation
of reward.”

- Silver, Singh, Precup, and Sutton

Key Implications:
A single scalar reward signal can drive all intelligent behavior
No need for continuous human supervision once we have the right reward
But how can we discover the right reward function?

The Alignment Challenge
If reward is enough, then specifying the right reward becomes critical for alignment
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Alignment with Reward Models ▷ The Path to RLHF

The Reward Specification Problem

From Direct Specification to Inverse Inference

The Paradox
Reward maximization can drive all intelligent behavior
But specifying the right reward is difficult

Direct Specification Challenges:
Complex human values
Unintended consequences
Reward hacking

Inverse Inference:
Humans already act on values
Their behavior reveals preferences
Can we work backwards?

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 20 / 261



Alignment with Reward Models ▷ The Path to RLHF

Inverse Reinforcement Learning

The IRL Solution
Key Insight: Instead of specifying rewards directly, infer them from human experience!

IRL bridges the gap:
Learns from human demonstrations - leverages existing experience
Infers underlying reward structure - no explicit specification needed
Enables autonomous learning - AI can then gather new experience

From Supervision to Automation
Advantage: IRL transforms expensive human supervision into reusable reward function R∗

that explains human behavior

“Learning from experience” meets “learning what to value”
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Alignment with Reward Models ▷ The Path to RLHF

Inverse Reinforcement Learning

The IRL Paradigm
Inverse RL: Given demonstrations D = {τ1, τ2, ..., τn} from expert policy πE ,
recover the underlying reward function R∗ such that:

πE = argmax
π

Eτ∼π

[ ∞∑
t=0

γtR∗(st , at)

]

Why IRL for Alignment?
1 Human behavior reveals human values
2 Learns from human behavior rather than explicit specification
3 Handles complex, multi-faceted objectives
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Alignment with Reward Models ▷ The Path to RLHF

Mathematical Foundation of IRL
Maximum Entropy IRL
Model human behavior as approximately optimal under unknown reward:

P(τ |R) =
1
Z exp

(∑
t

R(st , at)

)

where Z =
∑

τ ′ exp (
∑

t R(s ′t , a′t)) is the partition function.

Objective: Find R that maximizes likelihood of demonstrations:
max

R
Eτ∼D[logP(τ |R)]− λΩ(R)

Key properties:
Handles ambiguity through probabilistic framework
Avoids overfitting with regularization Ω(R)
Connects to maximum entropy RL
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Alignment with Reward Models ▷ The Path to RLHF

From Absolute Rewards to Relative Preferences

Rethinking the Learning Paradigm

Traditional IRL Challenges
Assumes absolute reward values
Requires optimal demonstrations
Sensitive to noise in demos
Hard to specify what’s "optimal"

Preference-based Insight
Relative comparisons are easier
No need for optimal behavior
Robust to demonstration quality
Natural expression of preferences

Preferences capture what matters without requiring absolute reward specification...
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Alignment with Reward Models ▷ The Path to RLHF

The Preference Learning Paradigm

Key Innovation
Instead of full demonstrations, learn from pairwise comparisons:

σ1 ≻ σ2 (trajectory σ1 preferred over σ2)

Bradley-Terry Model:

P(σ1 ≻ σ2) =
exp(R(σ1))

exp(R(σ1)) + exp(R(σ2))

Advantages:
Easier for humans to provide
More scalable feedback
Natural preference expression

σ1

σ2

Human σ1 ≻ σ2

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 25 / 261



Alignment with Reward Models ▷ The Path to RLHF

Preference-based RL Algorithm

Algorithm 1: Preference-based Reward Learning
Data: Policy π, Human preference queries
Result: Optimized policy π∗ and reward model Rθ
Initialize reward model Rθ and policy π;
repeat

Collect trajectory segments {σi} using π;
Query human for preferences: P = {(σi , σj , yij)};
Update reward model:;
θ ← θ + α∇θ

∑
(σi ,σj ,yij )∈P logP(yij |σi , σj , θ);

Optimize policy π using learned Rθ via RL;
until convergence;
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Alignment with Reward Models ▷ The Path to RLHF

From PbRL to RLHF

The key innovation: Apply preference learning to language models

Traditional PbRL:
States and actions
Trajectories
Sequential decisions

RLHF adaptation:
Prompts and completions
Full responses
Token-level decisions
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Alignment with Reward Models ▷ Deep Dive into RLHF
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Alignment with Reward Models ▷ Deep Dive into RLHF ▷ Stages in Language Model Training

Supervised Fine-tuning (SFT)

RLHF typically begins with a generic pre-trained LM, which is fine-tuned with supervised
learning (maximum likelihood) on a high-quality dataset for the downstream tasks of interest,
such as dialogue, instruction following, summarization, etc., to obtain a model πSFT.

Fig. 9. The process of SFT.
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Alignment with Reward Models ▷ Deep Dive into RLHF ▷ Stages in Language Model Training

Reward Model (RM) training

In the second stage, the SFT model is prompted with prompts x to produce pairs of answers
(y1, y2) ∼ πSFT(y | x). These answer pairs are then presented to human labelers who express
preferences for one answer, denoted as:

yw ≻ yl | x

where yw and yl denotes the preferred and dispreferred completion amongst (y1, y2)
respectively. The preferences are assumed to be generated by some latent reward model
r∗(y , x), which we do not have access to. The Bradley-Terry [7] model stipulates that the
human preference distribution p∗ can be written as:

p∗ (y1 ≻ y2 | x) =
exp (r∗ (x , y1))

exp (r∗ (x , y1)) + exp (r∗ (x , y2))
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Alignment with Reward Models ▷ Deep Dive into RLHF ▷ Stages in Language Model Training

Reward Model (RM) Training
Assuming access to a static dataset of comparisons:

D =
{

x (i), y (i)
w , y (i)

l

}N

i=1

sampled from p∗, we can parametrize a reward model rϕ(x , y) and estimate the parameters via
maximum likelihood. The negative log-likelihood loss:

LR (rϕ,D) = −E(x ,yw ,yl )∼D [log σ (rϕ (x , yw )− rϕ (x , yl))]

where σ is the logistic function. In the context of LMs, the network rϕ(x , y) is often initialized
from the SFT model πSFT(y | x). To ensure a reward function with lower variance, prior works
normalize the rewards, such that:

Ex ,y∼D [rϕ(x , y)] = 0

for all x .
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Alignment with Reward Models ▷ Deep Dive into RLHF ▷ Stages in Language Model Training

Reward Model (RM) Training
At this stage, we usually use smaller LLMs as reward models because this saves a lot of
computation. However, considering scaling laws, it is better to ensure these models still exceed
3B parameters.

Fig. 10. The process of RM training.
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Alignment with Reward Models ▷ Deep Dive into RLHF ▷ Stages in Language Model Training

Reinforcement Learning via Proximal Policy Optimization

During the RL phase, we use the learned reward function to provide feedback to the language
model. In particular, we formulate the following optimization problem:

max
πθ

Ex∼D,y∼πθ(y |x) [rϕ(x , y)]− βDKL [πθ(y | x)∥πref(y | x)]

where β is a parameter controlling the deviation from the base reference policy πref, namely
the initial SFT model πSFT. The added constraint is important, as it prevents the model from
deviating too far from the distribution on which the reward model is accurate, as well as
maintaining the generation diversity and preventing mode-collapse to single high-reward
answers.
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Alignment with Reward Models ▷ Deep Dive into RLHF ▷ Stages in Language Model Training

Reinforcement Learning via Proximal Policy Optimization
Finally, we train fine-tune the language model via PPO [8] which is a trust region optimization
algorithm that uses constraints on the gradient to ensure the update step does not destabilize
the learning process.

Fig. 11. The process of PPO training.
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Alignment with Reward Models ▷ Deep Dive into RLHF ▷ RLAIF: Learning from AI Feedback

Reinforcement Learning from AI Feedback
Reinforcement learning from human feedback (RLHF) has proven effective, but gathering
high-quality preference labels is expensive. RL from AI Feedback (RLAIF) offers a promising
alternative that trains the reward model (RM) on preferences generated by an off-the-shelf
LLM [9].

Fig. 12. A diagram depicting RLAIF (top) vs. RLHF (bottom) [9].
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Alignment with Reward Models ▷ Deep Dive into RLHF ▷ RLAIF: Learning from AI Feedback

Example of RLAIF: Constitutional AI

Constitutional AI [10]
Use AI to supervise AI behavior
Guided by constitutional principles
No human labels for harmlessness

Fig. 13. Harmlessness versus helpfulness Elo scores [10].

Key Innovation
Replace feedback for harmlessness with AI self-supervision using constitutional principles
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Alignment with Reward Models ▷ Deep Dive into RLHF ▷ RLAIF: Learning from AI Feedback

Examples of RLAIF: Constitutional AI

Constitutional AI (2022): Anthropic developed a method to train AI assistants using a
set of principles [10]

Without Constitutional AI

Prompt: How to hack into someone’s email?
Output: "Here are steps to access someone’s email ac-
count without permission..."

× Provides harmful content
× No ethical considerations

With Constitutional AI

Prompt: How to hack into someone’s email?
Output: "I can’t help with unauthorized access. Instead,
I can explain password recovery options..."

✓ Refuses harmful request
✓ Offers helpful alternative

Key Innovation: AI critiques and revises its own outputs based on constitutional principles
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Alignment with Reward Models ▷ Deep Dive into RLHF ▷ RLAIF: Learning from AI Feedback

Examples of RLAIF: Constitutional AI

1. Chain-of-Thought Reasoning

CoT Impact:
Improves from 65% 93% at 52B scale
Approaches human PM performance
Makes AI reasoning transparent

2. Critique-Revision Mechanism

Revision Benefits:
Progressive harm reduction
Critiques improve results (esp. small models)
Maintains helpfulness while removing harm
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Alignment with Reward Models ▷ Challenges of RLHF
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Fundamental Challenges

Fundamental Challenges

Two Types of Challenges [11]
Tractable Challenges: Can be addressed within RLHF framework
Fundamental Limitations: Require approaches beyond RLHF to fully address
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Human Feedback

Major Challenges with Human Feedback
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Human Feedback

Example: Evaluator Selection Bias

The Problem
OpenAI reported selecting evaluators based on agreement with researcher judgments,
potentially introducing systematic biases.

Demographics of Evaluators:
OpenAI: 50% Filipino and Bangladeshi nationals
Anthropic: 68% white population from 82% white initial pool
Age bias: 50% aged 25-34 (OpenAI)

Impact
These demographic biases can lead to:

Political biases in model outputs
Amplification of implicit biases during training
Systematic disadvantages for underrepresented groups
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Reward Models

Major Challenges with Reward Models

1. Problem Misspecification
Fundamental: Individual human values are difficult to represent with a reward function
Fundamental: A single reward function cannot represent diverse society

2. Reward Misgeneralization & Hacking
Fundamental: Reward models can misgeneralize even from correct labels
Fundamental: Optimizing imperfect proxies leads to reward hacking

3. Evaluation Difficulties
Tractable: Evaluating reward models is difficult and expensive
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Reward Models

Goodhart’s Law: Definition

Goodhart’s law When a measure becomes a target, it ceases to be a good measure[12].

AI
Model Loss function

Proxy Goal

True Goal

Training 
Process

Fig. 14. When an AI system excessively optimizes based on a specific artificially set objective(e.g., a pre-defined loss function.), its behavior
deviates from human expectations, leading to optimization in an inappropriate direction.
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Reward Models

Goodhart’s Law: Classification

Goodhart’s law There are (at least) four different mechanisms through which proxy targets
break when optimize for them.

Regressional Goodhart

Extremal Goodhart Adversarial Goodhart

Causal GoodhartBase object: 
A good basketball player

Proxy object: 
An athlete with a tall stature.

Observation: 

The taller, the better

Goodhart’s LawPlayer selection

6’3” 7’3”

Outstanding Normal Only want to be taller

Unable to play basketball

Turns out
to be

Push hard

Lie about their height

Fig. 15. There is a certain correlation between height and basketball skills, but solely selecting players based on height would be influenced by
Goodhart’s Law.
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Reward Models

Scaling Laws for Reward Overoptimization

When optimizing for a learned proxy
of the gold reward, the gold reward
initially increases and later
decreases [13].

Larger size reward models can help
mitigate the negative effects of
reward overoptimization to a certain
extent.
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Reward Models

Bradley-Terry Model Assumption

Standard RLHF pipeline relies on the Bradley-Terry (BT) model [7] assumption to train a
reward model. However, this assumption oversimplifies the complex nature of human
preferences and fails to capture several critical aspects [14] of real-world human preferences:

Transitivity The BT model enforces strict transitivity in preferences, meaning if a human
prefers response A to B and B to C, they must prefer A to C.
Independence The BT model assumes independence between preference judgments,
treating each comparison as an isolated event.
Completeness The BT model presumes completeness in human judgments, suggesting
that humans can always make clear preference decisions between any two responses.
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Reward Models

Reward Bias
Reward models may exhibit biases [15], particularly favoring longer responses.

Fig. 16. Log-scaled heatmap of output length vs. RLHF reward model score for a set of outputs generated from an SFT LLaMA-7B model.
Reward correlates strongly with length, and running PPO consistently leads to longer outputs (right).
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Reward Models

Tree-based Reward Modeling
Core Challenge

RLHF Trilemma: Incompatibility
between

1 High task diversity
2 Low labeling cost
3 Generalizable alignment

Root cause: Insufficient reward
generalization

Key Innovation
Tree-structured preference data

Reduces reward uncertainty by
Θ(log n/ log log n) times
No pipeline changes needed

Approach:
Macro-level: Autoencoding
framework
Micro-level: Induced Bayesian
Networks
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Reward Models

Tree-based Reward Modeling

Chain-based vs Tree-based Topology

Key Insight
Tree structure creates dependence between responses
through shared prefixes ⇒ Better reward generalization

Main Benefits
✓ Improved reward

generalization
✓ No pipeline changes needed
✓ Reduced annotation volume
✓ Better uncertainty bounds

Free performance gain via
topology design
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Policy Optimization

Major Challenges with Policy Optimization
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Policy Optimization

Language Models Resist Alignment

Key Insight: LLMs exhibit elasticity like
physical springs

The Elasticity of Language Models
dγD2/D

pθ

dl = Θ

(
−k dγD1/D

pθ

dl

)
where k = |D1|/|D2| ≫ 1

Two Phenomena:
1 Resistance: Models retain prior

distribution
2 Rebound: Deeper alignment faster

reversion

Physical Analogy:

F ∝ |Di | ·∆DKL(Ppθ
||PDi )

Dataset size = Spring constant

Implications

For AI Safety
Current alignment is superficial
Models inherently resist changes
Larger models = bigger problem

Practical Insights:
• Need elasticity-aware algorithms
• Balance dataset sizes in alignment
• Rethink open-source safety

"Language models are like springs - they
always want to bounce back"
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Policy Optimization

PPO Computational Cost
PPO requires simultaneously maintaining four models, which incurs significant computational
costs. A potential solution is to remove the critic model.

Fig. 17. Training pipeline of the RL phase [16] in RLHF.
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Policy Optimization

Remove the Critic Model: ReMax
ReMax [17] simplifies PPO by removing all the components related to the critic model,
significantly reducing the computational resources required for training.

Fig. 18. Comparison between the building blocks of PPO and those of ReMax.
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Policy Optimization

Remove the Critic Model: ReMax

ReMax provides several key observations regarding RLHF
Fast Simulation While the long-term return is expensive to get in classical RL
applications, it is cheap and easy to obtain in the RLHF setup.
Deterministic Environment The transition in RLHF setting is determinstic, and the
reward function is also deterministic since it is from the neural network.
Trajectory-level Reward RLHF tasks are close to single-stage optimization problems
since the rewards of the intermediate stages are 0.

These properties indicate that PPO may not be the best choice for RLHF.
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Policy Optimization

Remove the Critic Model: ReMax

ReMax removes the critic model by:

Using REINFORCE algorithm for
policy optimization [18].

Introducing a greedy baseline value
for unbiased variance reduction.
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Alignment with Reward Models ▷ Challenges of RLHF ▷ Challenges with Policy Optimization

Remove the Critic Model: ReMax
ReMax achieves comparable performance to PPO while reducing memory and computational
costs.

Fig. 19. GPU memory consumption and training time by PPO and ReMax, respectively.
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Remove the Critic Model: RLOO

In contrast to ReMax, REINFORCE Leave-One-Out (RLOO) [19] estimates unbiased baseline
using multiple online samples:

1
k

k∑
i=1

[R(y(i), x)−
1

k − 1
∑
j ̸=i

R(y(j), x)]∇ log π(y(i)|x) for y(1), . . . , y(k)
i .i .d∼ πθ(·|x),

where k refers to the number of online samples generated, RLOOk considers each y(i)
individually and uses the remaining k1 samples to create an unbiased estimate of the expected
return for the prompt, akin to a parameter-free value-function, but estimated at each training
step.
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Remove the Critic Model: RLOO
With only one additional online sample (k = 2), RLOO outperform other baselines.

Fig. 20. Test rewards plotted throughout training.
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Remove the Critic Model: MDLOO

Inspired by Mirror Descent Policy Optimization (MDPO) [20], Apple developed Mirror Descent
with Leave-One-Out (MDLOO) [21], which incorporates an additional KL regularization term:

∇θJ(θ) = Ex∼D,y∼πθold

[
πθ
πθold

∇ log πθ(y |x)ARLOO(x)
]
− 1

tk
Ex∼D,y∼πθold

[∇θKL(y ;πθ, πθold )],

this additional term is used to constrain policy updates within the proximity of the initial
policy at each k-th iteration.
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Complementary Approaches for AI Safety

Key Principle: Defense in Depth
No single strategy should be treated as a comprehensive solution. Multiple safety measures
with uncorrelated failure modes are needed.

Complementary Strategies:
1 Robustness: Adversarial training and anomaly detection
2 Risk Assessment: Rigorous evaluations and red teaming
3 Interpretability: Understanding model decision-making
4 Governance: Transparency and auditing standards
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Examples: GPT-4 Safety Measures

GPT-4 (2023): OpenAI implemented comprehensive safety measures during training [22]

Fig. 21. GPT-4 shows significant safety improvements compared to GPT-3.5-turbo across multiple categories

Alignment Techniques Used:
Adversarial testing with domain experts
Model-assisted safety evaluations
6 months of iterative alignment before release
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Focus on Safety: Safe RLHF
Safe RLHF formalize the safety concern of LLMs as an optimization task of maximizing the
reward function while satisfying specified cost constraints.

Fig. 22. Safe RLHF pipeline compared to conventional RLHF method.
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Focus on Safety: Safe RLHF

The ultimate goal of Safe RLHF [23] is to find a model πθ that is both helpful (high reward)
and harmless (low cost).

Fig. 23. Illustration of the objective of Safe RLHF.
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Focus on Safety: Safe RLHF

The objective for Safe RLHF is defined as:

max
θ

Ex∼D,y∼πθ(·|x)[Rϕ(y , x)], s.t. Cψ(y , x) ≤ 0, ∀x ∼ D, y ∼ πθ(·|x),

where D is a distribution of prompts used in the RL phase, and the y are responses generated
by the LLM πθ. The goal to maximize the expected reward within the constraints of ensuring
the harmlessness of the responses generated by the LLMs.
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Focus on Safety: Safe RLHF

Safe RLHF reformulates the safety constraint into an expectation form, paralleling the
structure of the objective function:

max
θ
JR(θ), s.t. JC (θ) ≤ 0,

To address this constrained problem, Safe RLHF leverages the Lagrangian method to convert
the constrained primal problem into its unconstrained Lagrangian dual form:

min
θ

max
λ≥0

[−JR(θ) + λ · JC (θ)],

where λ ≥ 0 serves as the Lagrange multiplier.
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Focus on Safety: Safe RLHF

The loss function with reward model can be written as:

LSafeRL
R (θ;D) = −Ex∼D,y∼πθ(y |x)[Et [min(ρt(θ)Âri , clip(ρt(θ), 1− ϵ, 1 + ϵ))Âri ]]

The loss function with cost model can be written as:

LSafeRL
C (θ;D) = −Ex∼D,y∼πθ(y |x)[Et [min(ρt(θ)Âci , clip(ρt(θ), 1− ϵ, 1 + ϵ))Âci ]]

Therefore, we can write Lagrangian loss function:

LSafeRL(θ;D) = 1
1 + λ

[LSafeRL
R (θ;D)− λ · LSafeRL

C (θ;D)]
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Focus on Safety: Safe RLHF

The PTX loss is:
LPTX (θ;DSFT ) = −E(x ,y)∼DSFT [πθ(y |x)],

The update rules for the model parameters θ and the Lagrangian multiplier λ can be derived
as:

θk+1 = θk −
η

1 + λk
∇θk [L

SafeRL
R (θk)− λk · LSafeRL

C (θk)]− ηγ∇θkL
PTX (θk),

where
lnλk+1 = lnλk + α · λk · JC (θk).

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 68 / 261



Alignment with Reward Models ▷ Challenges of RLHF ▷ Complementary Approaches for AI Safety

Focus on Safety: Safe RLHF
Empirical experiments demonstrate that Safe RLHF significantly improves model safety.

Fig. 24. Empirical experiment results of Safe RLHF.
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Open Problems for RLHF
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Alignment without Reward Models

Outline

1 Alignment for LLMs: Introduction

2 Alignment with Reward Models

3 Alignment without Reward Models

4 Alignment with General Preference Models

5 Alignment with Verifiers
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Overview

3 Alignment without Reward Models
Direct Alignment Algorithms
Limitations of Direct Alignment Algorithms
Online Direct Alignment Algorithms
How to Choose: RLHF or DPO?
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Why do we need DPO?

While RLHF has achieved great success, the RLHF pipeline is considerably complex, incurring
significant computational costs.

Fig. 25. RLHF training pipeline [24].

Can we devise a simple and effective alignment algorithm that avoids the complexities
of RL optimization?
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What is DPO?

Direct Preference Optimization (DPO) [25] directly optimizes for the policy with a simple
classification objective, fitting an implicit reward model whose corresponding optimal policy
can be extracted in closed form.

Fig. 26. DPO optimizes for human preferences while avoiding reinforcement learning.
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Three Derivation Approaches for DPO

Path 1: From RL theory via Inverse RL
Path 2: Direct optimization of RLHF objective
Path 3: Generalization beyond reverse KL divergence
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Path 1: From IRL to DPO

Starting Point: Maximum Entropy IRL
Given expert demonstrations, recover reward function
Key insight: Bijection between rewards and Q-functions via inverse soft Bellman operator

Inverse Preference Learning (IPL)
Extension to preference data: σ(1) ≻ σ(2)

Replace explicit reward with implicit reward from Q-function.

DPO as Special Case
When γ = 0 (contextual bandit):

r(s, a) = Q(s, a) (inverse Bellman becomes identity)
Substituting yields DPO objective
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Revisit Maximum Entropy IRL

Starting Point: Maximum Entropy RL
Given reward r , find optimal policy with entropy regularization:

max
π∈Π

Eρπ [r(s, a)] +H(π)

Key Result: Optimal Policy Form
The solution has an explicit form:

π∗(a|s) = exp(Q∗(s, a))∑
a′ exp(Q∗(s, a′))

where Q∗ is the unique solution to the soft
Bellman equation.

Inverse Problem: Max Ent IRL
Given expert demonstrations πE , find reward:

max
r∈R

min
π∈Π

L(π, r) =EρE [r(s, a)]

− Eρπ [r(s, a)]−H(π)
− ψ(r)
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Inverse Soft Bellman Operator

Theorem (Inverse Soft Bellman Operator)
For a fixed policy π, the operator T π : RS×A → RS×A defined as:

r(s, a) = (T πQ)(s, a) = Q(s, a)− γEs′∼P(·|s,a)[V π(s ′)]

is a bijection between rewards and Q-functions.

Implications
One-to-one correspondence: r ↔ Q
Can optimize Q instead of r
Avoids nested min-max optimization

Reward Space R Policy Space Π

Q-function Space Ω

Bπr (Bellman)

πQ = 1
Zs

exp(Q)T π (Inverse)
Bijective

Key Insight: This bijection allows us to work directly with Q-functions
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Optimality and Convergence

For a fixed Q, the optimal policy is:

πQ(a|s) =
1
Zs

exp(Q(s, a))

where Zs =
∑

a exp(Q(s, a))

Transform the min-max problem into a single
maxmization over Q

max
Q∈Ω
J (πQ,Q)

The objective J∗(Q) = J(πQ,Q) is concave in Q

Proposition (Unique Saddle Point)
There exists a unique saddle point (Q∗, π∗) such that:

Q∗ = argmaxQ∈Ωminπ∈Π J(π,Q)

π∗ = πQ∗ = 1
Zs

exp(Q∗(s, a))
r∗ = T π∗Q∗ solves the original IRL problem

Result: Optimizing over Q alone recovers both optimal policy and reward!
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From Trajectories to Preferences
IRL: Learning from Expert Trajectories

Data: (s, a) pairs from expert
Goal: Recover reward function
Method: Optimize Q via bijection

⇒
IPL: Learning from Preferences

Data: Preferences σ(1) ≻ σ(2)

Goal: Learn aligned policy
Method: Apply same Q-function

Bradley-Terry Preference Model
Human preference probability depends on cumulative rewards:

PE [σ
(1) ≻ σ(2)] =

exp
(∑

t rE (s(1)t , a(1)t )
)

exp
(∑

t rE (s(1)t , a(1)t )
)
+ exp

(∑
t rE (s(2)t , a(2)t )

)
IPL’s Innovation
Replace explicit reward r with implicit reward from Q-function: r(s, a) = (T πQ)(s, a)
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Inverse Preference Learning

IPL Preference Model
Using the inverse soft Bellman operator:

PQπ [σ(1) ≻ σ(2)] =
exp

(∑
t(T πQ)(s(1)t , a(1)t )

)
exp

(∑
t(T πQ)(s(1)t , a(1)t )

)
+ exp

(∑
t(T πQ)(s(2)t , a(2)t )

)
IPL Loss Function
Optimize Q to match human preferences while ensuring optimality:

Lp(Q) =− E(σ(1),σ(2),y)∼Dp

[
y logPQ∗ [σ(1) ≻ σ(2)]

+ (1− y) log(1− PQ∗ [σ(1) ≻ σ(2)])
]

+ λψ(T ∗Q)

Result: Learn policy from preferences without explicit reward modeling!
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From IPL to DPO - The Contextual Bandit Case

Key Simplification
DPO emerges as a special case of IPL when we consider contextual bandits

Step 1: Simplify T ∗ with γ = 0
In bandits, no future states ⇒ γ = 0:

r(s, a) = (T ∗Q)(s, a) = Q(s, a)

The inverse Bellman operator becomes
identity!

Step 2: Express Q via Policy
From KL-regularized RL:

π∗(a|s) ∝ µ(a|s) exp(Q∗(s, a)/α)

Rearranging:

Q∗(s, a) = α log
π∗(a|s)
µ(a|s) + Z (s)

These two steps transform IPL’s Q-based objective into DPO’s policy-based objective!
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Path 2: Direct Derivation

RLHF Objective

max
πθ

Ex∼D,y∼πθ(y |x)[rϕ(x , y)]− βDKL[πθ(y |x)∥πref(y |x)]

Key Steps
1 Rewrite as KL minimization problem
2 Apply Gibbs’ inequality to find optimal policy
3 Express reward in terms of optimal policy
4 Apply Bradley-Terry model for preferences
5 Partition function Z (x) cancels out
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Deriving DPO’s Loss Function
Substituting into Preference Model
For responses yw (preferred) and yl (less preferred) to the same prompt:

r(yw )− r(yl) = Q(yw )− Q(yl) (since r = Q when γ = 0)

=

(
α log

π(yw )

µ(yw )
+ Z (s)

)
−
(
α log

π(yl)

µ(yl)
+ Z (s)

)
= α

(
log

π(yw )

µ(yw )
− log

π(yl)

µ(yl)

)
DPO’s Loss Function
Substituting into IPL’s preference loss yields exactly DPO:

DPO(π) = −E(x ,yw ,yl )

[
log σ

(
α log

π(yw |x)
µ(yw |x)

− α log
π(yl |x)
µ(yl |x)

)]
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Derivation of the Closed Form Solution

The optimization objective of RLHF is given by:

max
πθ

Ex∼D,y∼πθ(y |x) [rϕ(x , y)]− βDKL (πθ(y |x)∥πref(y |x)) (1)

where:
rϕ(x , y): Reward function trained on human feedback.
DKL: KL divergence between πθ and reference policy πref.
β: Regularization strength.

Substitute the definition of KL divergence, the objective becomes:

max
πθ

Ex∼D,y∼πθ(y |x) [rϕ(x , y)]− βEx∼D,y∼πθ(y |x) log
πθ(y |x)
πref(y |x)

.
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Derivation of the Closed Form Solution

Combine the terms into a single expectation:

max
πθ

Ex∼D,y∼πθ(y |x)

[
rϕ(x , y)− β log

πθ(y |x)
πref(y |x)

]
.

Reformulate as a minimization problem by negating the expression:

= min
πθ

Ex∼D,y∼πθ(y |x)

[
log

πθ(y |x)
πref(y |x)

− 1
β

rϕ(x , y)
]
.
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Derivation of the Closed Form Solution

= min
πθ

Ex∼D,y∼πθ(y |x)

log πθ(y |x)
1

Z(x)πref(y |x) · exp
(

1
β rϕ(x , y)

) − logZ (x)

 ,
where we have the partition function:

Z (x) =
∑

y
πref(y |x) exp

(
1
β

r(x , y)
)
.

Note that the partition function is a function of only x and the reference policy πref, but does
not depend on the policy π. We can now define

π∗(y |x) = 1
Z (x)πref(y |x) exp

(
1
β

r(x , y)
)
,
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Derivation of the Closed Form Solution

which is a valid probability distribution as π∗(y |x) ≥ 0 for all y and
∑

y π
∗(y |x) = 1. Since

Z (x) is not a function of y , we can then re-organize the final objective as:

min
π

Ex∼D

[
Ey∼π(y |x)

[
log

π(y |x)
π∗(y |x)

]
− logZ (x)

]
= min

π
Ex∼D [DKL(π(y |x)∥π∗(y |x))− logZ (x)] .

Now, since Z (x) does not depend on π, the minimum is achieved by the policy that minimizes
the first KL term. Gibbs’ inequality tells us that the KL-divergence is minimized at 0 if and
only if the two distributions are identical. Hence we have:

π(y |x) = π∗(y |x) = 1
Z (x)πref(y |x) exp

(
1
β

r(x , y)
)

for all x ∈ D. This completes the derivation.
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Derivation of the DPO Objective

Since we have derived the closed form solution for the RLHF objective in Eq.(1):

π∗(y |x) = 1
Z (x)πref(y |x) exp

(
1
β

r(x , y)
)
, (2)

where Z (x) =
∑

y πref(y |x) exp
(

1
β r(x , y)

)
is the partition function. Let’s now derive the

DPO objective. we first take the logarithm of both sides of this equation and then with some
algebra we obtain:

r(x , y) = β log
πr (y | x)
πref(y | x)

+ β logZ (x).

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 89 / 261



Alignment without Reward Models ▷ Direct Alignment Algorithms ▷ Derivations of DPO

Derivation of the DPO Objective

It is straightforward to derive the DPO objective under the Bradley-Terry preference model as
we have

p∗(y1 ≻ y2 | x) =
exp (r∗(x , y1))

exp (r∗(x , y1)) + exp (r∗(x , y2))
. (3)

Since we have showed that we can express the ground-truth reward through its corresponding
optimal policy:

r∗(x , y) = β log
π∗(y | x)
πref(y | x)

+ β logZ (x). (4)
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Derivation of the DPO Objective

Substituting Eq.(3) into Eq.(4) we obtain:

p∗(y1 ≻ y2 | x) =
exp

(
β log π∗(y1|x)

πref(y1|x) + β logZ (x)
)

exp
(
β log π∗(y1|x)

πref(y1|x) + β logZ (x)
)
+ exp

(
β log π∗(y2|x)

πref(y2|x) + β logZ (x)
)

=
1

1 + exp
(
β log π∗(y2|x)

πref(y2|x) − β log
π∗(y1|x)
πref(y1|x)

)
= σ

(
β log

π∗(y1 | x)
πref(y1 | x)

− β log π∗(y2 | x)
πref(y2 | x)

)
.
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Derivation of the DPO Objective

Finally, we obtain the objective of DPO:

LDPO(πθ;πref) = −E(x ,yw ,yl )∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log πθ(yl | x)
πref(yl | x)

)]
.
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Path 3: f -divergence Generalization

Generalized Objective

max
π

Eπ[r(y |x)]− βDf (π, πref)

where Df (p, q) = Eq
[
f
(

p(x)
q(x)

)]
for convex f with f (1) = 0

Key Results

Closed-form solution: π∗(y |x) = 1
Z(x)πref(y |x)(f ′)−1

(
r(y |x)
β

)
Reward reparameterization theorem
DPO is special case when f (t) = t log t (reverse KL)
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Beyond Reverse KL

DPO focuses on the closed form solution under the constraint of reverse KL divergence.
However, what are the impacts of incorporating other divergences? For example, reverse KL
tend to exhibit mode-seeking property, while forward KL exhibits mass-covering behavior [26].

Fig. 27. The mode seeking and mass covering behaviors of reverse KL and forward KL.
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Beyond Reverse KL

Now, we define f -divergence [26], which covers a broad class of commonly used divergences by
choosing the specific function f .

Definition (f -divergence)
For any convex function f : R+ → R that satisfies f (1) = 0 and f is strictly convex around 1,
the corresponding f -divergence for two distributions p and q is defined as:

Df (p, q) = Eq(x)

[
f
(

p(x)
q(x)

)]
.
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Beyond Reverse KL
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Beyond Reverse KL

To derive the DPO objective under f -divergence, we need to first solve the closed form
solution. The objective of RLHF under f -divergence becomes:

max
π

Eπ[r(y |x)]− βDf (π, πref) s.t.
∑

y
π(y |x) = 1 and π(y |x) ≥ 0, ∀y .

The two constraints are introduced to ensure that the solution is a valid distribution. To solve
the constrained problem, we can apply the Lagrange multiplier, which gives us

L(π, λ, α) = Eπ[r(y |x)]− βEπref

[
f
(
π(y |x)
πref(y |x)

)]
− λ

(∑
y
π(y |x)− 1

)
+
∑

y
α(y)π(y |x),

where λ and α(y) are the dual variables.
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Beyond Reverse KL

For such problems, we can derive the closed-form solution for π⋆, which optimally solves the
above problem:

π⋆(y |x) = 1
Z (x)πref(y |x)(f ′)−1

(
r(y |x)
β

)
,

where Z (x) is the normalization constant, and (f ′)−1 is the inverse function of f ′. By solving
the equation for r(y |x), we establish the following relationship between r(y |x) and π⋆(y |x),

r(y |x) = βf ′
(
π⋆(y |x)
πref(y |x)

· Z (x)
)
.
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Beyond Reverse KL

When Df is the reverse KL divergence, Z (x) will be canceled out. However, this cancellation
does not generally occur for other types of f -divergences. Luckily, by carefully analyzing the
normalization constant Z (x), we can derive a closed-form solution for many other (but not all)
divergences as well. To do this, we first rewrite π∗(y | x) in the following form using the dual
variables λ and α(y):

π⋆(y |x) = πref(y |x)(f ′)−1
(

r(y |x)− λ+ α(y)
β

)
.
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Beyond Reverse KL

Next, we show that for a class of f -divergences, we must have α(y) = 0, and thus we can
represent the reward using only the trainable policy, the reference policy, and a constant. This
can be summarized in the following theorem [26].

Theorem
If πref(y |x) > 0 for any valid x and f ′ is invertible with 0 /∈ dom(f ′), the reward class that is
consistent with the Bradley-Terry model can be reparameterized using the policy model π(y |x)
and a reference model πref(y |x) as

r(y |x) = βf ′
(
π⋆(y |x)
πref(y |x)

)
+ const.
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Beyond Reverse KL

Given this theorem, for a pair of examples (x , yw ) and (x , yl), we can plug the reward into the
Bradley-Terry model, which gives us the following expression:

p(yw ⪰ yl |x) = σ

(
βf ′
(
π⋆(yw |x)
πref(yw |x)

)
− βf ′

(
π⋆(yl |x)
πref(yl |x)

))
.

Hence, for a preference dataset D, we train the model πθ (replacing π⋆ in the above equation)
by minimizing the following negative log-likelihood loss:

L(θ,D) = E(x ,yw ,yl )∼D

[
− log σ

(
βf ′
(
πθ(yw |x)
πref(yw |x)

)
− βf ′

(
πθ(yl |x)
πref(yl |x)

))]
.
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Beyond Reverse KL

Experimental results demonstrate that reverse KL divergence achieves the highest accuracy
but the lowest diversity in generation. Adjusting the divergence regularization allows us to
trade-off between alignment accuracy and diversity.
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What does DPO update do?

To understand DPO, it is useful to analyze the gradient, i,e.,∇θLDPO(πθ;πref):

−βE(x ,yw ,yl )∼D

 σ(r̂θ(x , yl)− r̂θ(x , yw ))︸ ︷︷ ︸
higher weight when reward estimate is wrong

 ∇θ log π(yw |x)︸ ︷︷ ︸
increase likelihood of yw

− ∇θ log π(yl |x)︸ ︷︷ ︸
decrease likelihood of yl




Intuitively, the gradient of the loss function LDPO increases the likelihood of the preferred
completions yw and decreases the likelihood of dispreferred completions yl . Importantly, the
examples are weighed by how much higher the implicit reward model r̂θ rates the dispreferred
completions, scaled by β, i.e, how incorrectly the implicit reward model orders the
completions, accounting for the strength of the KL constraint.
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Kahneman-Tversky Optimization (KTO)

Motivation
Most methods require preference data
(e.g., DPO, RLHF)
Preferences are expensive and scarce
Binary feedback is more abundant and
natural

Key Insight
Humans perceive outcomes with cognitive
biases
Prospect theory [27] explains these biases
mathematically

Fig. 28. Kahneman-Tversky Value Function [28]
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Human-Aware Losses (HALOs)

Definition: A loss function incorporating
human cognitive biases

HALO Form:

f (πθ, πref) = Ex ,y [ax ,y ·v(rθ(x , y)− z0)]+CD

where:
rθ(x , y) = l(y) log πθ(y |x)

πref(y |x) (implied
reward)
z0 = EQ[rθ(x , y ′)] (reference point)
v(·): value function (concave in gains)
ax ,y ∈ {−1,+1}: direction coefficient

DPO as HALO:
l(y) = β (scaling factor)
v(z) = log σ(z) (concave everywhere)
z0 = rθ(x , yl) (reference)
ax ,y = −1 (minimizing loss)

PPO-Clip as HALO:
Reward: rθ = log π̃θ

π̃ref
for implied π̃

Value function:

v(z) = min(z , (1 + sign(z)ϵ)A)

Reference: policy distribution
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Kahneman-Tversky Optimization (KTO)

Key Innovation: Prospect-theory loss with binary accept/reject feedback

KTO Loss Function:

LKTO = Ex ,y∼D[λy − v(x , y)]

where v(x , y) =
{
λDσ(β(rθ − z0)) if y desirable
λUσ(β(z0 − rθ)) if y undesirable

Advantages:
Works with binary feedback
Handles imbalanced data
Can skip SFT at scale
More robust to noisy data
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Visualization of different HALOs

Fig. 29. The utility that a human gets from the outcome of a random variable, as implied by different human-aware losses (HALOs). Notice that
the implied value functions share properties such as loss aversion with the canonical human value function in prospect theory [29]
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Theoretical Insights

Why does KTO work so well?
1. Implicit noise filtering
|rθ(x , y)| → ∞ ⇒ |∇| → 0
Down-weights mislabeled or extremely hard/easy
examples

2. Robust to contradictory feedback
DPO can favor a minority view when πref is skewed
KTO (with λD = λU) deterministically picks the
majority

3. Direct utility optimization
Maximizes human utility, not preference likelihood
Better alignment with true human values

rθ

|∇|

Hard Learnable Easy
Fig. 30. KTO gradient behavior

Theorem: For contradictory
preferences with noise, KTO has
better worst-case guarantees than
DPO [29]
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When to Use KTO vs DPO?

Use KTO when:
You have binary feedback data
Data is imbalanced (few positive
examples)
Feedback is noisy or contradictory
You want to skip SFT (large models)

Use DPO when:
You have clean preference data
Data has little noise/intransitivity
You need maximum performance
You have balanced datasets

Feedback Type?

Binary Preferences

KTO Noisy?

KTO DPO
Yes No

Fig. 31. Decision guide for alignment methods
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ψ-Preference Optimization (ψPO)

General Objective [30]

max
π

E x∼ρ
y∼π(·|x)
y ′∼µ(·|x)

[ψ(p∗(y ≻ y ′|x))]− βDKL(π||πref )

, where ψ : [0, 1]→ R is a non-decreasing function

Key Insight: Both RLHF and DPO are special cases!
RLHF/DPO: ψ(q) = log(q/(1− q))
IPO [30]: ψ(q) = q (identity function)
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Problems with RLHF/DPO

Overfitting Issue:
When p∗(y ≻ y ′) = 1 (deterministic preference)
Bradley-Terry requires (r(y)− r(y ′))→ +∞
Optimal policy: π∗(y ′) = 0 regardless of β
KL regularization becomes ineffective!

Key Problem
No matter how large β is (strong regularization), the optimal policy completely ignores y2

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 111 / 261



Alignment without Reward Models ▷ Direct Alignment Algorithms ▷ Variants of Direct Alignment Algorithms

IPO: Identity Preference Optimization

IPO Objective (ψ = Identity)

max
π

p∗
ρ(π ≻ µ)− βDKL(π||πref )

Key Advantages:
Bounded objective function
Effective KL regularization even with deterministic preferences
No Bradley-Terry assumption needed

Optimal Policy:
π∗(y) ∝ πref (y) exp

(
β−1Ey ′∼µ[p∗(y ≻ y ′)]

)
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IPO: Practical Algorithm

Sampled IPO Loss

L(π) = E(yw ,yl )∼D

[(
hπ(yw , yl)−

β−1

2

)2]

where hπ(y , y ′) = log
(
π(y)πref (y ′)
π(y ′)πref (y)

)
Intuition: IPO regresses log-likelihood ratios to β−1/2

Algorithm 2: Sampled IPO
Input: Dataset D, reference policy πref

Define hπ(y , y ′, x) = log
(
π(y |x)πref (y ′|x)
π(y ′|x)πref (y |x)

)
Starting from π = πref , minimize: L(π)
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Overview

3 Alignment without Reward Models
Direct Alignment Algorithms
Limitations of Direct Alignment Algorithms
Online Direct Alignment Algorithms
How to Choose: RLHF or DPO?
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Scaling Laws
While Direct Alignment Algorithms (DAAs) do not rely on a separate proxy reward model,
they still suffer from overoptimization. As KL budgets increase, DAAs show degradation
patterns similar to those of classic RLHF methods [31].

Fig. 32. Results on overoptimization in Direct Alignment Algorithms for DPO, IPO and SLiC [31].
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Chosen Implicit Rewards Collapse
Ideally, DPO should increase the implicit rewards for chosen responses while decreasing them
for rejected responses. In practice, however, the implicit rewards for both chosen and rejected
responses decline, although the margin between them increases [32].

Fig. 33. The evolution of implicit rewards for DPO on TLDR [32].
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Chosen Implicit Rewards Collapse

To analyze this problem, we first reformulate the loss function [33] of DPO:

LDPO(πθ;πref) = −E(x ,yw ,yl )∼D

[
log σ

(
β log

πθ(yw |x)
πref(yw |x)

− β log πθ(yl |x)
πref(yl |x)

)]
= −

[
log σ

(
β log

πθ(yw |x)
πref(yw |x)

− β log πθ(yl |x)
πref(yl |x)

)]
= − log

(
xβ1

xβ1 + xβ2

)
,

where β is a hyper-parameter and σ is the sigmoid function. For easing the calculation, we
denote πθ(yw |x)

πref(yw |x) = x1 and πθ(yl |x)
πref(yl |x) = x2. In this case, to minimize the loss, we could increase

x1 and decrease x2.
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Chosen Implicit Rewards Collapse

The partial derivatives of this loss function with respect to x1 and x2 are given by:
∂LDPO(x1;x2)

∂x1
= − βxβ

2
x1(xβ

1 +xβ
2 )
,

∂LDPO(x1;x2)
∂x2

=
βxβ−1

2
xβ

1 +xβ
2
.

Thus, we have ∣∣∣∣∂LDPO(x1; x2)

∂x1

/∂LDPO(x1; x2)

∂x2

∣∣∣∣ = x2
x1
.

We can further prove, for any pairwise preference data, the update rate x2
x1
< 1 holds [33].

This means that DPO loss function decreases the probability of dispreferred data at a faster
rate than it increases the probability of preferred data.
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Chosen Implicit Rewards Collapse
We can see that during DPO training, the gradient varies across different regions, making the
performance of the SFT model significantly impact training [33].

Fig. 34. The optimization plane (loss landscape) and gradient field of DPO. red arrows.
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Chosen Implicit Rewards Collapse

An effective approach to address this issue is to incorporate an additional NLL loss term into
the DPO loss function [34]:

LDPO+NLL = LDPO(πθ, πref) + LNLL(πθ)

= −E(yw ,yl )∼D[log σ

(
β log

πθ(yw |x)
πref(yw |x)

− β log πθ(yl |x)
πref(yl |x)

)
+ α

log πθ(yw |x)
|yw |

],

Note that the NLL term is normalized by the total response length. The hyperparameter α
balances the two loss terms.

Intuitively, the additional NLL loss helps the model effectively distinguish between the chosen
and rejected responses during training, encouraging the model to maximize the log probability
of the chosen responses.
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Chosen Implicit Rewards Collapse
DPO+NLL loss effetively prevents the chosen log probability from decreasing while gives
superior test accuracy [34].

Fig. 35. Effect of NLL loss term on DPO training for GSM8K.
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Chosen Implicit Rewards Collapse

An alternative approach to address this issue is DPO-Positive (DPOP) [35], which
incorporates a regularization term that penalizes the model if it reduces the probability of the
preferred completion below that of the reference model. This encourages DPOP to
consistently increase the likelihood of preferred completions.

LDPOP = −E
[
log σ

(
β

(
log

πθ(yw | x)
πref(yw | x)

− log
πθ(yl | x)
πref(yl | x)

)
− λmax

(
0, log πref(yw | x)

πθ(yw | x)

))]
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Should We Update the Reference Policy?
As shown in the Figure [36], generally, it’s better to update the reference policy. Updating the
reference policy relaxes the constraint paths, facilitating the optimization process. In contrast,
relaxing the KL regularization strength only expands the KL ball.

Fig. 36. Illustration of the difference between the two learning objectives. The left-hand figure corresponds to the KL-regularized target where we
do not update the reference model. The right-hand figure corresponds to the non-regularized target where we always update the reference model
as the last-iteration one [36].

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 123 / 261



Alignment without Reward Models ▷ Limitations of Direct Alignment Algorithms

How to Update the Reference Policy?
Generally, there are two ways to update the reference policy [37]: a soft update (center) and a
hard update (right). In a soft update, the parameters of πθ are merged into the parameters of
πref with a specified weight α, blending the two gradually. In a hard update, the parameters of
πθ are copied entirely into the reference policy at set intervals, after a predetermined number
of training steps τ .

Fig. 37. Two ways to update the reference policy.
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How to Update the Reference Policy?

Both update methods outperform vanilla DPO [37].

Fig. 38. Evaluation performance of models trained by different methods, measured on the Alpaca Eval (a) and Arena Hard (b) benchmarks. The
Llama-3-Base model was used as the baseline.
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Is Direct Alignment Sufficient?
DPO is popular for its stability and efficiency; however, both empirical and theoretical analyses
show that the DPO objective is insufficient for correcting even minor ranking errors in the
reference model [38].

Fig. 39. Both reference and preference-tuned models exhibit low ranking accuracy on most preference datasets [38].
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Is Direct Alignment Sufficient?

DPO objective was formulated to ensure that the model learns the preference dataset but does
not move too far from the reference model πref, however, existing reference models rarely have
correct rankings.

Fig. 40. Various reference models exhibit low ranking accuracy on most preference datasets [38].
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Is Direct Alignment Sufficient?

Even under ideal conditions (i.e., perfectly optimizing the objective function on true preference
data), the optimal ranking accuracy sometimes falls short of 100%. This gap varies with the
choice of β, indicating that the limitations of DPO/RLHF are heavily influenced by the
dependence on πref.

Fig. 41. The idealized ranking accuracy of existing algorithms is not perfect, but preference tuned models exhibit ranking accuracies far even from
this idealized case [38].
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Is Direct Alignment Sufficient?
Despite continuously decreasing the loss, DPO rarely flips the rankings of pairs and instead
mostly increases the reward margin of already correctly ranked pairs.

Fig. 42. DPO rarely flips the rankings of pairs [38].
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Is Direct Alignment Sufficient?

DPO loss alone does not predict ranking accuracy, due to the influence of the reference model
log-ratio in the loss.
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Is Direct Alignment Sufficient?

When the model weights have not travelled far from θref, ranking accuracy and win rate
increase together.
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Is Direct Alignment Sufficient?

Key Takeaways:
Impact of Regularization. When the model diverges significantly from the reference
model, regularization toward the reference model can impair its generative capabilities,
which are primarily acquired during pretraining.
Off-Policy vs. On-Policy Generations. The model’s off-policy behavior can no longer
reliably predict its on-policy generations when the reference model in the offline objective
differs greatly from the current model.
Effectiveness of On-Policy Preference Data. There is a fundamental tradeoff between
fitting the preference data and preserving the generative capabilities learned during
pretraining. Adding on-policy preference data can improve the effectiveness of offline
learning.
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Overview
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Standard Online Direct Alignment Pipeline
The standard online direct alignment algorithm [39] typically begins with an SFT model as the
initial policy. In each iteration, N responses are generated per prompt and evaluated by a
reward model (or preference model) to identify the best and worst responses, forming a
preference dataset. This dataset is then used by direct alignment algorithms like DPO or IPO
to update the policy model iteratively.

Fig. 43. Illustration of our implementation of iterative direct preference learning. In iteration t = 1, the historical dataset is empty, and the
resulting policy model π1 the same as its initialization, π0, which is the SFT model checkpoint. After that, the historical dataset grows with
preference data collected from previous iterations [39].
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Standard Online Direct Alignment Pipeline
This training pipeline has already been applied in the training process of the Llama 3 series
models [40].

Fig. 44. Illustration of the overall post-training approach for Llama 3. The post-training strategy involves rejection sampling,supervised finetuning,
and direct preference optimization [40].
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Why Do We Need Online Direct Alignment Algorithms?
Despite the training simplicity of DPO, it is important to note that DPO is fundamentally an
offline algorithm. Recent studies provide compelling evidence that online algorithms
consistently outperform offline methods [41, 42].

Fig. 45. Online algorithms achieve superior performance-KL divergence trade-offs compared to offline methods [41].
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When Does On-policy Sampling Improve over Offline Fine-tuning?

Core Question: When does on-policy sampling improve over offline fine-tuning, even though
on-policy samples are annotated by a reward model learned from offline data? Is sample reuse
useful or harmful?

Key Takeaways [42]:
1 On-policy sampling improves performance

Consistent performance improvements with on-policy sampling in reward models
Larger batch sizes B lead to more off-policy updates and lower performance
Demonstrated on both on-policy RWR and REINFORCE algorithms

2 Sample reuse enables leveraging off-policy data
Moderate reuse improves efficiency (e.g., T = 2 outperforms T = 1)
Excessive reuse hurts performance due to increased off-policy nature
Algorithms with off-policy control (e.g., PPO) perform better with reuse
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When Does An Explicit Negative Gradient Help the Discovery of Effective
Policies?

Core Question: When and how does an explicit negative gradient improve policy discovery in
offline preference learning?

Key Takeaways [42]:
1. Negative gradient accelerates
convergence

Aggressively pushes down bad action
likelihoods
Leads to better policies with larger
KL values
IPO (with negative gradient) >
Best-of-N/RWR

2. Contrastive training widens margins

Increases gap between
preferred/dispreferred
DPO > non-contrastive methods
(e.g., Pref-FT)
Effect varies with model capacity &
data size
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Does On-Policy Sampling Offer Complementary Benefits to Negative
Gradient?

Core Question: Does on-policy sampling offer complementary benefits to negative gradient,
resulting in better performance with contrastive approaches like DPO?

Empirical Evidence:
Online IPO (on-policy + negative gradient) > Offline IPO (negative gradient only) >
RWR (on-policy only)
Complementary mechanisms:

On-policy sampling: explores new regions of policy space
Negative gradient: efficiently suppresses bad actions

Combined approach achieves superior reward-KL tradeoff

Key Takeaways [42]: On-policy sampling and negative gradients are complementary
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RLHF vs DPO

RLHF (Two-stage Approach)
1 Reward Modeling: Learn rRLHF ∈ F
2 Policy Optimization:
πRLHF = argmaxπ∈Π V π

rRLHF

Advantages:
Explicit reward representation
Leverages reward structure

DPO (Direct Approach)
1 Bypasses reward modeling
2 Directly optimizes policy from preferences
3 Uses surrogate reward:

r̂θ(y) = β log πθ(y)
πref(y)

Advantages:
More stable training
No need for RL algorithms

Central Question
Under what conditions is DPO equivalent, superior, or inferior to RLHF?
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Performance Analysis Framework [43]

Performance Metric:
V π

r∗ := Ey∼π[r∗(y)]− βKL(π∥πref)

Model Classes:
Reward class: F = {rϕ : ϕ ∈ RdR}
Policy class: Π = {πθ : θ ∈ RdP}
Surrogate reward class: FΠ

Key Conditions [43]:
1 r∗ ∈ F , π∗ ∈ Π (No mis-spec)
2 r∗ ∈ F , π∗ /∈ Π (Policy mis-spec)
3 r∗ /∈ F , π∗ ∈ Π (Reward mis-spec)
4 r∗ /∈ F , π∗ /∈ Π (Double mis-spec)

Bradley-Terry Model
Human preferences follow: p∗(y1 > y2) = σ(r∗(y1)− r∗(y2))
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Results: Model Mis-specification

Scenario Performance Comparison Insight

No Mis-specification V πRLHF
r∗ = V πDPO

r∗ Both achieve optimal

Policy Mis-specification V πRLHF
r∗ ≥ V πDPO

r∗ RLHF leverages exact reward

Reward Mis-specification V πRLHF
r∗ ≤ V πDPO

r∗ DPO avoids reward error

Isomorphic Double V πRLHF
r∗ = V πDPO

r∗ Online DPO can excel

Key Findings [43]:
RLHF advantage: When reward model is realizable but policy is not
DPO advantage: When policy is realizable but reward model is not
Online DPO: Can outperform both under isomorphic mis-specification
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Statistical Efficiency Gap: Sparse Recovery

Dual-token Sparse Prediction (DTSP) Task:
Ground-truth reward: r∗(y , ω) = βrT

sparseψ(y) + βeT
1 ψ(y , ω)

Sparsity: ∥rsparse∥0 = k ≪ d

Reward Learning (RLHF):
Can leverage sparsity structure
Estimation error: O(

√
k log d/n)

Efficient sparse recovery

Surrogate Reward (DPO):
Entangles sparse structure
Estimation error: Ω(d/n)
Cannot exploit sparsity

Statistical Separation
RLHF requires O(k log d) samples vs DPO requires Ω(d) samples
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Takeaways

Main Insights [43]
1 No universal winner: Performance depends on model mis-specification type
2 RLHF advantages: Better when reward is simpler/sparse than policy
3 DPO advantages: Avoids reward modeling errors, more stable training
4 Online methods: Can bridge gaps in certain scenarios

Practical Guidelines:

Choose RLHF when:
Reward structure is simple/sparse
High-quality reward model available
Policy class is limited

Choose DPO when:
Reward modeling is challenging
Policy class is expressive
Training stability is crucial
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Alignment with General Preference Models

Outline

1 Alignment for LLMs: Introduction

2 Alignment with Reward Models

3 Alignment without Reward Models

4 Alignment with General Preference Models

5 Alignment with Verifiers
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Alignment with General Preference Models ▷ Revisit Stages in Language Model Training

Overview

4 Alignment with General Preference Models
Revisit Stages in Language Model Training
Solution Concept
Solving the Minmax Winner
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Revisit Three Stages in RLHF
Standard RLHF pipeline [44] typically consists of three stages: 1) supervised fine-tuning
(SFT); 2) reward model training and 3) RL preference optimization.

Fig. 46. Three stages of RLHF [44].
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Revisit Reward model (RM) training

In the reward model training stage, the SFT model is prompted with prompts x to produce
pairs of answers (y1, y2) ∼ πSFT(y | x). These answer pairs are then presented to human
labelers who express preferences for one answer, denoted as:

yw ≻ yl | x ,

where yw and yl denotes the preferred and dispreferred completion amongst (y1, y2)
respectively. The preferences are assumed to be generated by some latent reward model
r∗(y , x), which we do not have access to. The Bradley-Terry [7] model stipulates that the
human preference distribution p∗ can be written as:

p∗ (y1 ≻ y2 | x) =
exp (r∗ (x , y1))

exp (r∗ (x , y1)) + exp (r∗ (x , y2))
.

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 149 / 261



Alignment with General Preference Models ▷ Revisit Stages in Language Model Training

Revisit Reward Model (RM) Training
Assuming access to a static dataset of comparisons:

D =
{

x (i), y (i)
w , y (i)

l

}N

i=1

sampled from p∗, we can parametrize a reward model rϕ(x , y) and estimate the parameters via
maximum likelihood. The negative log-likelihood loss:

LR (rϕ,D) = −E(x ,yw ,yl )∼D [log σ (rϕ (x , yw )− rϕ (x , yl))] ,

where σ is the logistic function. In the context of LMs, the network rϕ(x , y) is often initialized
from the SFT model πSFT(y | x). To ensure a reward function with lower variance, prior works
normalize the rewards, such that:

Ex ,y∼D [rϕ(x , y)] = 0

for all x .
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Bradley-Terry Model Assumption

Standard RLHF pipeline relies on the Bradley-Terry (BT) model [7] assumption to train a
reward model. However, this assumption oversimplifies the complex nature of human
preferences and fails to capture several critical aspects [14] of real-world human preferences:

Transitivity The BT model enforces strict transitivity in preferences, meaning if a human
prefers response A to B and B to C, they must prefer A to C.
Independence The BT model assumes independence between preference judgments,
treating each comparison as an isolated event.
Completeness The BT model presumes completeness in human judgments, suggesting
that humans can always make clear preference decisions between any two responses.
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4 Alignment with General Preference Models
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Alignment with General Preference Models ▷ Solution Concept

Background

Given choices from a population of raters that are represented as a preference function P,
social choice theory [45] studies the question of how best to select options that satisfy the
diversity of preferences inherent in the said population.

Fig. 47. An intransitive preference function P over (a, b, c, d). P(x, y) = 1 if P(xy) = 1, 1 if P(xy) = 0, and 0 if P(xy) = 0.5 [46].
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Copeland Winner

Given this preference function, the solution concept of Copeland Winner [46] means to pick
the option that beats the largest number of other options. In the above matrix, this would be
either option a or d as they have the largest row sums.

CW (P) ≜ argmax
π∈Π

∑
π′∈Π
P(π, π′).

While intuitively appealing, Copeland Winners are often not unique and can not handle
intransitivity [46].
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Minmax Winner

In contrast to Copeland Winner, Minmax Winner [47], also known as a von Neumann Winner,
is defined as the following pair of strategies:

MW(P) ≜

argmax
p∈∆(Π)

min
q∈∆(Π)

Eπ1∼p,π2∼q
[
P(π1, π2)

]
,

argmin
q∈∆(Π)

max
p∈∆(Π)

Eπ1∼p,π2∼q
[
P(π1, π2)

]
 .

The Minmax Winner is essentially the Nash equilibrium of the preference-based payoff matrix,
thus it is unique and always exists. Intuitively, this means that we never pick a solution that
makes a significant portion of the population consistently unhappy.
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Minmax Winner

We can make following observations about a Minmax Winner [46]:
We don’t need to assume the existence of an underlying reward function when we define a
Minmax Winner.
When there actually does exist an underlying reward function that explains the observed
preferences, the Minmax Winners coincide with the optimal policy for that reward.
Minmax Winners satisfy a variety of desirable consistency properties (e.g. merging
populations that agree on a Minmax Winner cannot change the outcome), which
deterministic options like the Copeland Winner cannot satisfy simultaneously.
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Overview

4 Alignment with General Preference Models
Revisit Stages in Language Model Training
Solution Concept
Solving the Minmax Winner
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Mirror Descent
Mirror Descent (MD) [48, 49] is a first-order optimization algorithm. The update rule for MD
applied to player i is given by:

πk+1 = argmin
π∈Π

{
⟨F (πk), π⟩+ 1

η
Bψ(π, πk)

}
, (5)

where η > 0 is the learning rate, and Bψ(π, π′) = ψ(π)− ψ(π′)− ⟨∇ψ(π′), π − π′⟩ is the
Bregman divergence associated with a strongly convex function ψ.

Fig. 48. Visualization of a step of Mirror Descent.
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Self-Play Preference Optimization
Self-Play Preference Optimization (SPO) [46] proposes leveraging MD-based deep RL
algorithms to find the Nash equilibrium.

Fig. 49. Pseudocode of SPO [46].
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Direct Nash Optimization
Inspired by DPO [50], Direct Nash Optimization [51] bypasses the RL step and directly
optimizes policies to find the Nash equilibrium.

Fig. 50. Pseudocode of DNO [51].
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Self-Play Preference Optimization

Self-Play Preference Optimization (SPPO) [52] follows the same idea, but adopts a different
approach to derive the closed-form solution. The closed-form solution of MD can be written as:

πt+1(y|x) =
πt(y|x) exp(ηP(y ≻ πt |x))

Zπt (x)
, (6)

where Zπt (x) =
∑

y πt(y|x) exp(ηP(y ≻ πt |x)) is the normalizing factor. For any fixed x and y,
πt+1 should satisfy the following equation:

log

(
πt+1(y|x)
πt(y|x)

)
= η · P(y ≻ πt |x)− logZπt (x). (7)
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Self-Play Preference Optimization

Unlike DPO, SPPO direct approximate eq. (7) using L2 loss:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y |x)
πt(y |x)

)
− (ηP(y ≻ πt |x)− logZπt (x))

)2
.

SPPO chooses to sample K finite samples and denote the empirical distribution by π̂K
t and

replaces logZπ̂K
t
(x)) with η/2. The finite-sample optimization problem can be then

approximated as

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y |x)
πt(y |x)

)
− (ηP(y ≻ π̂K

t |x)−
1
2

)2
.
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Limitations of Mirror Descent

Average-iterate convergence can be achieved by either:

Maintaining multiple policies for averaging, or
Learning and updating an averaged policy.

Both approaches introduce considerable computational overhead, particularly in the context of
LLM alignment.
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Limitations of Mirror Descent
To avoid this computational burden, many studies simply adopt the last-iterate policy of MD.
However, recent research has revealed that the last-iterate policy of MD exhibits Poincaré
recurrence behavior [53, 54].

Fig. 51. MD in the saddle-point problem f (x1, x2) = (x1
1
2 )(x2

1
2 ) +

1
3 exp((x1

1
4 )

2(x2
2

3
4 )

2).
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Last-iterate Convergence

In the context of LLM alignment, this implies that approaches that based on MD such as
SPO [46] and SPPO [52] may not be well-suited. This raises a critical question: can we design
an algorithm that achieves last-iterate convergence? Formally, we define last-iterate
convergence as:

Definition (Last-iterate Convergence)
Consider nonempty set of equilibria Π∗ ⊂ Π, we say that a sequence {πk}k≥1 exhibits
last-iterate convergence if πk converges to π∗ ∈ Π∗ as k →∞.
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Magnetic Mirror Descent

Compared to MD, Magnetic Mirror Descent (MMD) [55] introduces an additional magnetic
term. Formally, the MMD update rule can be expressed as

πk+1 ∈ argmin
π∈Π
{⟨F (πk), π⟩+ αBψ(π;πref) +

1
η

Bψ(π;πk)}, (8)

where πref is the magnet, which means πk+1 is attracted to either minπ∈Π ψ(π) or πref, α is
the regularization temperature, η is the learning rate. In contrast to MD, MMD solves the
regularized game

min
π1∈Π1

max
π2∈Π2

αg(π1) + f (π1, π2)− αg(π2), (9)

where f and g are both convex functions and g can be taken either ψ or Bψ(·;πref) for some
πref .
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Magnetic Mirror Descent

The last-iterate policy of MMD performs much better than that of MD.

Fig. 52. Performance of PPO, SAC, DQN, MMD on Kuhn Poker.
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Magnetic Mirror Descent

Theorem 1 (Last-iterate Convergence) [55]
Consider the MMD update rule. Assume πk+1 ∈ domψ and Π is bounded, F is monotone and
L-smooth with respect to ∥ · ∥, g is 1-strongly convex relative to ψ over Π with g differentiable
over the interior of domψ. Then the sequence {πk}k≥1 generated by MMD exhibits linear
last-iterate convergence to the solution π∗r if η ≤ α

L2 . Specifically,

Bψ(π∗r ;πk+1) ≤ Bψ(π∗r ;π1)

(
1

1 + ηα

)k
,

where α > 0 is the regularization temperature and η > 0 is the learning rate.
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Magnetic Mirror Descent

Another interesting aspect of MMD is that MMD can be seen as a special case of MD with an
adjusted gradient and stepsize.

Theorem 2 (Connections to Mirror Descent) [55]
The update rule of MMD in (8) is equivalent to the following rule:

πk+1 ∈ argmin
π∈Π

{
⟨F (πk) + α∇πk Bψ(πk ;πref), π⟩+

1
η̄

Bψ(π;πk)

}
,

where the stepsize is defined as η̄ = η
1+ηα .
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Nash Learning from Human Feedback

Nash-MD [56] aims to find the Nash equilibrium of the KL-regularized game via MD.

Pτ (π ≻ π′)
def
= P(π ≻ π′)− τKLρ(π, µ) + τKLρ(π′, µ) (2)

The reference policy of Nash-MD is defined as a geometric mixture between the current policy
πt and the reference policy µ:

πµt (y)
def
=

πt(y)1−ηtτµ(y)ηtτ∑
y ′ πt(y ′)1−ηtτµ(y ′)ηtτ

, (10)

A step of mirror descent relative to the regularized policy πµt is:

πt+1
def
= argmax

π
[ηtP(π ≻ πµt )− KL(π, πµt )]. (11)
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Nash Learning from Human Feedback

Nash-MD produces a sequence of policies (πt)1≤t≤T with last-iterate convergence to the
regularized Nash equilibrium π∗τ at a speed O(1/T ).

Theorem 3 (Last-iterate Convergence of Nash-MD) [56]
Let π∗τ be the Nash equilibrium of the regularized preference model. At every iteration t we
have that

KL(π∗τ , πt+1) ≤ (1− ηtτ)KL(π∗τ , πt) + 2η2
t . (6)

For the choice ηt = 2/(τ(t + 2)) we have

KL(π∗τ , πT ) ≤
8

τ2(T + 1) . (12)
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Iterative Nash Policy Optimization

Similar to DNO [51] and SPPO [52], Iterative Nash Policy Optimization (INPO) [57] aims to
directly optimize policies to find Nash equilibrium while achieving last-iterate convergence.
Given the preference oracle P, the loss function for any π ∈ Π is defined as:

ℓt(π) := −Ey∼π,y ′∼πt [P(y ≻ y ′)] + τKL(π∥πref). (13)

Minimize this loss with MD:

πt+1 = argmin
π∈Π
⟨∇ℓt(πt), π⟩+ ηKL(π∥πt), (14)
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Iterative Nash Policy Optimization

Following the derivation of DPO [50], we have that:

πt+1(y) ∝ πt(y) exp
(
−1
η
∇yℓt(πt)

)
∝ exp

(
P(y ≻ πt)

η

)
πref(y)

τ
η πt(y)1− τ

η ,

where P(y ≻ πt) represents Ey ′∼πt [P(y ≻ y ′)]. To avoid the normalization factor, we define
ht(π, y , y ′) as:

ht(π, y , y ′) = log
π(y)
π(y ′)

− τ

η
log

πref(y)
πref(y ′)

− η − τ
η

log
πt(y)
πt(y ′)

. (15)
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Iterative Nash Policy Optimization

Following the derivation of IPO [58], we have the population loss:

Ey ,y ′∼πt ,yw ,yl∼λp(y ,y ′)

[(
ht(π, yw , yl)−

1
2η

)2
]
. (16)
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Iterative Nash Policy Optimization

INPO enjoys the last-iterate convergence to Nash policy π∗ at the speed O(1/T ).

Theorem 4 (Last-iterate Convergence of INPO)
let C = max(Bτ, 1), at each iteration t we have

KL(π∗, πt+1) ≤
(

1− τ

η

)
KL(π∗, πt) +

8C2

η2 . (17)

Suppose we use a time-varying parameter ηt =
τ(t+2)

2 , we obtain

KL(π∗, πT ) ≤
32C2

τ2(T + 1) . (18)
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Convergence to the NE of the Original Game
Although Nash-MD, INPO enjoy last-iterate convergence, MMD alone only achieves
last-iterate convergence to the regularized game. Increasing the regularization accelerates
MMD convergence, but simultaneously causes the learned NE to deviate further from the NE
of the original game.
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Convergence to the NE of the Original Game

To achieve last-iterate convergence to the NE of the original game, we first define the n-th
regularized game as

Jn(π1, π2) = min
π1∈Π1

max
π2∈Π2

P(π1 ≻ π2) + αDKL(π1∥π∗,n−1
r )− αDKL(π2∥π∗,n−1

r ), (19)

where π∗,n−1
r is the NE of the (n − 1)-th regularized game.
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Convergence to the NE of the Original Game

Then, we can prove the following Lemma.

Lemma 1
Let {π∗,nr }n≥1 be the sequence of NEs of the regularized games generated by iteratively solving
(19), where π∗,1r is an arbitrary initial reference policy in the interior of Π. For any n ≥ 1, if
π∗,nr ∈ Π /∈ Π∗, we have

min
π∗∈Π∗

DKL(π
∗∥π∗,n+1

r ) < min
π∗∈Π∗

DKL(π
∗∥π∗,nr ). (20)

Otherwise, if π∗,nr ∈ Π∗, then π∗,n+1
r = π∗,nr ∈ Π∗.
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Convergence to the NE of the Original Game

Based on Lemma 1, we have the following theorem.

Theorem 5 (Convergence to the NE of the Original Game)
If Lemma 1 holds, the sequence {π∗,nr }n≥1 converges to the NE π∗ ∈ Π∗ of the original game
as n→∞.
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Convergence to the NE of the Original Game

Theorem 2 suggests a two-stage convergence process for MMD to reach the NE of the original
game.

First, as established in Theorem 1, MMD achieves linear last-iterate convergence to the
NE of each regularized game.

Then, by iteratively updating the magnet policy to the most recent regularized NE, we
guide the sequence of regularized NEs {π∗,nr }n≥1 towards the NE π∗ of the original game.
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Magnetic Preference Optimization
Based on above analysis, we propose Magnetic Preference Optimization (MPO), which
achieves last-iterate convergence to the NE of the original game [59].

Fig. 53. Overview of MPO.
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Magnetic Preference Optimization
MPO significantly enhances model safety across three self-play iterations and consistently
boosts the win rate across eight safety-related categories.

Fig. 54. Performance across each safety-related category for three self-play iterations of MPO.
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Magnetic Preference Optimization
MPO demonstrates a steady improvement in win rates across three iterations. In contrast,
MPO without self-play underperforms, even compared to the first iteration of self-play. This
reveals the fact that while RLHF with BT models runs the risk of overfitting to the reward
model, RLHF with general preference models faces the risk of overfitting to the opponent.

Fig. 55. Performance across each safety-related category for three self-play iterations of MPO.
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Evolution of AI Paradigms

Time

Era of Simulation
Virtual environments

Specific tasks

2014-2018

Era of Human Data
Massive datasets

General capabilities

2018-2025

Era of Experience
Autonomous learning
Superhuman abilities

2025-

Key Milestones [60]
Era of Simulation: AlphaGo, Atari, StarCraft II, Dota 2
Era of Human Data: GPT-3, ChatGPT, Large Language Models
Era of Experience: AlphaProof, Autonomous scientific discovery
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Why Do We Need the Era of Experience?

Limitations of Human Data
High-quality data sources nearly exhausted
Cannot exceed human knowledge boundaries
Progress demonstrably slowing down

Advantages of Experiential Learning
Self-improvement: Data quality improves with agent capability
Breaking boundaries: Discover new theorems, technologies, breakthroughs
Scale advantage: Experience will dwarf human data volume

Example: AlphaProof generated 100 million formal proofs through RL, achieving
medal-level performance at the IMO.
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Four Pillars of the Era of Experience

Streams of Experience
Continuous lifelong learning
Adaptation over months/years
Self-correction and improvement

Grounded Actions
Rich sensorimotor interaction
Autonomous exploration
Beyond human interfaces

Grounded Rewards
Environmental feedback
Not human prejudgment
Discover novel strategies

Experience-Based Reasoning
World model construction
Planning from consequences
Beyond human thought patterns
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Verification as the Key

Sutton’s Insight
"The insight that I would claim to have is that the key to a successful AI is that it can tell for
itself whether or not it is working correctly."

— Richard Sutton, Self-Verification, The Key to AI

From Human Feedback to Self-Verification
Traditional RLHF: Limited by human annotation capacity and quality
Self-Verification: Models can autonomously evaluate their outputs
Key Advantage: Enables infinite learning cycles without human bottlenecks

Verification enables the transition from human-limited to experience-unlimited learning
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Deliberative Alignment: A New Paradigm

"I propose to consider the question, ‘Can machines think?’"
— Alan M. Turing, 1950,

Computing Machinery and Intelligence

Deliberative Alignment [61]
Directly teach models safety specifications and train them to explicitly reason over these
specifications before answering

Traditional Approach:
Learn from labeled examples
Implicit pattern recognition
Fixed compute per response

Deliberative Alignment:
Learn actual safety policies
Explicit reasoning via CoT
Variable inference compute
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Deliberative Alignment vs. Traditional RLHF

Fig. 56. Comparison of deliberative alignment and tranditional RLHF [61]. In RLHF, there is no reasoning during inference time.
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Two-Stage Training Process

1.Supervised Fine-Tuning (SFT) Stage

Goal: Teach model to directly reference
safety specifications in its CoT.

Method: Collect (prompt, CoT, output)
tuples for supervised fine-tuning.

CoT references safety specs.
Context Distillation generates data.

Result: SFT provides strong prior.

2. Reinforcement Learning (RL) Stage

Goal: Train model to reason more
effectively.

Method: Use high-compute RL with
judge LLM (GRM) providing reward signal.

GRM has access to safety specs.

Result: Optimized reasoning process,
more aligned with specs.
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Deliberative Alignment vs. Traditional RLHF

Fig. 57. Main safety results. The o1 models advance the Pareto frontier of refusing to answer malicious jailbreak prompts and not over-refusing
benign prompts, compared to GPT-4o and other state-of-the-art LLMs [61].
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Impact of Test-Time Compute

Findings:
More compute → better safety
Especially for complex tasks
Validates test-time reasoning

Fig. 58. Impact of inference-time compute on model performance. The o1 model has stronger performance on challenging evals when allowed
more compute to spend on reasoning [61].
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Overview

5 Alignment with Verifiers
Era of Experience
Test-time Scaling Law
Verifiable Rewards
Process Rewards
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Human Thinking vs AI Reasoning

Human Thinking
Difficult problems Longer thinking
Deep reasoning Better decisions

AI Reasoning
More compute Multiple attempts
Search & verify Optimized output

How can AI "think harder" like humans?

Question: Given a fixed inference-time compute budget, how much can an LLM
improve its performance on challenging prompts?
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Scaling Law

Test-time Scaling Law [62]: Model performance improves logarithmically
with increased inference-time computation, allowing the model to think longer.
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Mechanisms for Scaling Test-time Compute [62]

1. Search Against Verifiers
Process Reward Models (PRM)
Beam search
Lookahead search
Best-of-N sampling

2. Refining Proposal Distribution
Sequential revisions
Self-critique & improvement
Iterative refinement
Learning from mistakes

Key Insight: Different approaches work better for different problem
difficulties

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 198 / 261



Alignment with Verifiers ▷ Test-time Scaling Law

Test-time vs. Pretraining Compute

FLOPs-Matched Evaluation
Compare smaller model + test-time compute vs. 14x larger pretrained model

Test-time compute wins when: Pretraining wins when:

Easy/medium questions
Low inference requirements
R = Dinference

Dpretrain
<< 1

Hard questions
High inference load
R = Dinference

Dpretrain
>> 1

Note: Test-time and pretraining compute are NOT 1-to-1 exchangeable
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Overview

5 Alignment with Verifiers
Era of Experience
Test-time Scaling Law
Verifiable Rewards
Process Rewards
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RLVR [63]: Beyond Traditional RLHF

Traditional RLHF Limitations
Requires training reward models
Susceptible to reward hacking
Complex preference data needed
High computational overhead

RLVR Innovation
Uses verifiable rewards
Binary correctness signals
No reward model needed
Applied to math, coding, IF tasks

Reward Model

Policy

Traditional RLHF

Verifier

Policy

RLVR
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RLVR Objective and Verification

RLVR Optimization Objective

max
πθ

Ey∼πθ(x) [v(x , y)− βKL[πθ(y |x)||πref(y |x)]]

where verifiable reward function:

v(x , y) =
{
α if correct
0 otherwise

GSM8K

Math Problem

Extract Answer

Exact Match MATH

Math Problem

Flex Extract

Flex Match IFEval

Instruction

Constraints

Verify
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RLVR vs Traditional Approaches

Best Practices
Initialize value from general RM
Use verifiable rewards only (not RM scores)
Start from stronger base models
Monitor for overoptimization
Careful hyperparameter tuning

When to Use RLVR
Tasks with clear correctness criteria
Domains where verification is feasible
When reward hacking is a concern
As part of comprehensive training pipeline
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DeepSeek R1 Series

Challenges
LLMs still struggle with complex
reasoning
OpenAI o1 showed potential of
test-time scaling
Lack of open-source reasoning models
Limited understanding of RL’s role

Objectives
Explore pure RL for reasoning
Develop open-source alternative to o1
Distill capabilities to smaller models
Advance AI alignment research

Key Innovation: First to validate that pure RL
can incentivize LLM reasoning without SFT
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GRPO: RL Algorithm behind DeepSeek R1
Group Relative Policy Optimization (GRPO) [64] also leverages multiple samples, but keeps
most features of PPO.

Fig. 59. GRPO foregoes the value model, instead estimating the baseline from group scores [64].
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GRPO: RL Algorithm behind DeepSeek R1

Specifically, GRPO optimizes the following objective:

Ex∼D,y∼πold

{
min

[
πθ
πold

AGRPO, clip
(
πθ
πold

, 1− ε, 1 + ε

)
AGRPO

]
− βDKL[πθ||πref ]

}
,

where AGRPO is estimated as:

AGRPO(y , x) = r̂(y , x) = r(y , x)−mean(r)
std(r) .

GRPO estimates the KL divergence with the following unbiased estimator, which is guaranteed
to be positive:

DKL[πθ||πref ] =
πref (oi ,t |q, oi ,<t)

πθ(oi ,t |q, oi ,<t)
− log

πref (oi ,t |q, oi ,<t)

πθ(oi ,t |q, oi ,<t)
− 1,
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GRPO as Adaptive Contrastive Loss [65]

Standard GRPO Objective

max
θ

Eq∼ρQEo∼πθold (·|q)
πθ(o|q)
πθold(o|q)

A(q, o)− βKL(πθ||πref)

Advantage Function with Verifiable Rewards
For binary reward r(q, o) ∈ {0, 1}:

A(q, o) =


√

1−p
p if r(q, o) = 1

−
√

p
1−p if r(q, o) = 0

where p = Po∼πold(·|q)(r(q, o) = 1)

Key Insight: This creates an adaptive weighting scheme based on success probability!
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GRPO as Adaptive Contrastive Loss

0 0.2 0.4 0.6 0.8 10

1

2

3

p = 0.5

Probability of Success p

W
eig

ht

ω+(p) =
√

1−p
p (success)

ω−(p) =
√

p
1−p (failure)

When p < 0.5:
High weight on successes
Low weight on failures

When p > 0.5:
Low weight on successes
High weight on failures
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GRPO Policy Evolution and Fixed Point Iteration [65]

Theorem (GRPO Policy Dynamics)
The optimal GRPO policy at iteration n is:

πn(o|q) =
1

Zn−1(q)
πref(o|q) exp

(
1
β

[
ω+
ε (pn−1)1r=1 − ω−

ε (pn−1)1r=0
])

Theorem (Probability of Success Fixed Point)
The probability of success satisfies:

pn = hε,pref(pn−1)

where
hε,pref(p) =

1

1 + 1−pref
pref

exp

(
− 1
β
√

p(1−p)+ε

)
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GRPO Success Amplification Theorem [65]

Theorem (GRPO Amplifies Success)
Let 0 < pref < 1. Any fixed point p∗ of hε,pref satisfies p∗ > pref if:

1 pref ≤ 1
2 for all β > 0

2 pref >
1
2

β cosh2

 1

2β
√

1
4 + ε

 ≥ pref(1− pref)(2pref − 1)
2[pref(1− pref) + ε]3/2

Convergence Condition
Local convergence to fixed point p∗ occurs when |hε,pref | < 1, i.e.,

β >
p∗(1− p∗)|2p∗ − 1|
2[p∗(1− p∗) + ε]3/2
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DeepSeek-R1-Zero [66]: Pure Reinforcement Learning

Core Components
GRPO: Group Relative Policy Optimization
Rule-based Rewards:

Accuracy rewards (math verification)
Format rewards (thinking process)

Simple Template: Guide reasoning
No SFT: Direct RL on base model

DeepSeek-V3
Base Model

Large-Scale
RL Training

DeepSeek
R1-Zero

Emergent Behaviors
The model spontaneously learned to reflect, self-verify, and explore alternative approaches!
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The "Aha Moment" Discovery

Fascinating Observation
During RL training, the model spontaneously learned to re-evaluate its approach:

Wait, wait. Wait. That’s an aha moment I can flag here.
Let’s reevaluate this step-by-step to identify if the
correct sum can be...

Significance
Self-directed learning
No explicit instruction
Emergent meta-cognition

Implications
RL discovers reasoning patterns
Models can self-improve
Path to more autonomous AI
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DeepSeek-R1: Multi-Stage Training Pipeline

Cold Start
(Few CoTs)

Reasoning
RL

Rejection
Sampling
+ SFT

All-Scenario
RL

Stabilize
early training

Enhance
reasoning Improve

readability

Align with
preferences

Key Improvements over R1-Zero
Language consistency rewards to reduce mixing
Combined reasoning and non-reasoning data
Helpfulness and harmlessness reward models
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Distillation Results

Key Findings
7B model outperforms QwQ-32B
14B model surpasses all comparable
models
32B/70B models approach o1-mini
Distillation > Direct RL on small
models
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Important Discovery
Reasoning patterns from larger models transfer effectively to smaller ones through distillation!
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Logic-RL [67]: Motivation

Research Questions
Can reasoning abilities emerge in smaller models?
What is the optimal training data structure?
How to reliably replicate DeepSeek-R1’s results?

Key Challenge
Current datasets (GSM8K, Omni-MATH) have uncontrolled variance in problem complexity
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Knights and Knaves: Problem Structure

Problem Example
Setup: Island with Knights (truth) and
Knaves (lies)
Statements:

1 Zoey: "Oliver is not a knight"
2 Oliver: "Oliver is a knight iff Zoey is

a knave"
Solution:

Zoey is a knave
Oliver is a knight

Why K&K Puzzles?
Procedural Generation - Infinite
variants
Controlled Difficulty - 2-8 people,
1-4 operators
Unambiguous Solutions - Binary
verification
Pure Logic - No domain knowledge
needed

Complexity

Difficulty

Controllable Space
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Rule-Based Reward Design
Format Reward Criteria

Tags appear exactly once
Correct sequential order
Genuine reasoning in <think>
Extractable answer format

Reward Hacking Prevention
Observed hacking behaviors:

Skipping thinking process
Reasoning in answer tag
Repeated guessing
Nonsense padding
Revisiting after answer

Reward Function

Sformat =

{
1 if correct
−1 if incorrect

(21)

Sanswer =


2 if fully correct
−1.5 if partial
−2 if missing

(22)
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Reinforce++ [68]

Key Modifications
1 Token-level KL Penalty

r(st , at) = I(st = [EOS])r(x , y)− βKL(t)

2 Unbiased KL Estimator

DKL =
πref
πθ
− log

πref
πθ
− 1

Always non-negative!
3 Global Batch Mean Reward as Baseline

Anorm
q,ot =

Aq,ot −mean(Aq,ot )

std(Aq,ot )
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RL Algorithm Comparison

GRPO
Weakest performance

Less stable convergence

REINFORCE++
Best balance

Stable & efficient

PPO
Highest accuracy

138% slower
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SFT Memorizes, RL Generalizes [67]

Key Insights
RL: Higher test accuracy with minimal memorization
RFT: Slight improvement but heavy memorization
Within same LiMem range, RL vastly outperforms, suggesting better generalization ability

Memorization Score

LiMem(f ;D) = Acc(f ;D) · (1− CR(f ;D))

where CR = consistency ratio on perturbations
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Key Findings

What Works
✓ Thinking tokens ("verify", "yet")

improve reasoning
✓ RL generalizes better than SFT
✓ REINFORCE++ outperforms GRPO
✓ Curriculum learning provides marginal

benefits

What Doesn’t
× Longer responses ̸= better reasoning
× Language mixing hinders performance
× Some tokens ("recheck") decrease

accuracy
× No sudden "aha moment" observed

Key Insight: SFT memorizes, RL generalizes
RL develops abstract problem-solving schemata
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Overview
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Test-time Scaling Law
Verifiable Rewards
Process Rewards
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Process Reward Model

Traditional reward models use outcome-based supervision, i.e., Outcome Supervised
Reward Models (ORMs) [69], where only the final result is evaluated and receives
feedback. However, in reasoning tasks, ORM targets is not perfectly reliable: false
positives solutions that reach the correct answer with incorrect reasoning will be
misgraded.
In contrast, process supervised reward models (PRMs) [69] provide feedback for each step
in the chain-of-thought (COT). It is easier for humans to interpret and it more directly
rewards models for following a human-endorsed COT.
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Process Reward Model
The solution on the left is correct while the solution on the right is incorrect. A green
background indicates a high PRM score, and a red background indicates a low score. The
PRM correctly identifies the mistake in the incorrect solution.

Fig. 60. Two solutions to the same problem, graded by the PRM [69].
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rStar-Math [70]: Overview

Fig. 61. Overview of rStar-Math, which is a self-evolvable System 2-style reasoning approach that achieves the state-of-the-art math reasoning.
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Monte Carlo Tree Search for Math Reasoning

MCTS Process
1 Selection: UCT-based node

selection
2 Expansion: Generate

code-augmented steps
3 Verification: Execute Python

code
4 Back-propagation: Update

Q-values

Key Advantage
Breaks complex problems into simple
steps
Automatic Q-value annotation
Eliminates erroneous intermediate
steps

UCT(s) = Q(s) + c

√
lnNparent(s)

N(s)
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Four Rounds of Self-Evolution

Round Policy Model Reward Model Method Problems Solved Key Achievement

1 DeepSeek-236B None Terminal-guided 60.17% Bootstrap SLM
2 SLM-r1 (7B) PPM-r1 Terminal-guided 66.60% Reliable PPM
3 SLM-r2 (7B) PPM-r2 PPM-augmented 77.86% Quality boost
4 SLM-r3 (7B) PPM-r3 PPM-augmented 90.25% Olympiad-level

Evolution

Capability

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 227 / 261



Alignment with Verifiers ▷ Process Rewards ▷ rStar-Math

Emergent Capabilities

Self-Reflection
Model recognizes mistakes
Backtracks to find better solutions
No explicit self-reflection training
Emerges from deep thinking

PPM Insights
Identifies theorem applications
Fermat’s Little Theorem
Vieta’s formulas
AM-GM inequality
Guides toward correct paths

Key Insight
PPM shapes the reasoning boundary - Once policy model is reasonably strong, PPM
becomes the key determinant of upper performance limit.

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 228 / 261



Alignment with Verifiers ▷ Process Rewards ▷ Implicit PRM

Challenge of Process Reward Models

Outcome Reward Models (ORMs):
Evaluate entire responses
Process Reward Models (PRMs):
Score each reasoning step
PRMs provide:

Denser, fine-grained rewards
Better transparency & interpretability
Superior performance in best-of-N
sampling

The Problem
Training PRMs requires step-level
annotations, which are:

Expensive to collect (38.8x more
FLOPs)
Prone to annotation noise
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Implicit PRMs [71] from ORMs

Get PRM for Free from ORM
An implicit PRM can be obtained at no additional cost by training an ORM with a specific
reward parameterization.

Reward Parameterization:

rθ(y) = β log
πθ(y)
πref(y)

Process Reward:

r t
θ = qt

θ − qt−1
θ =

t∑
i=t−1

β log
πθ(yi |y<i)

πref(yi |y<i)

Key Properties:
Works with various objectives (DPO,
KTO, NCA, CE)
No step-level annotations needed
Learns Q-function implicitly
More accurate than MCTS-based
approaches
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Theoretical Foundation

Theorem (Implicit Q-function Learning)

When parameterizing the outcome reward as rθ(y) = β log πθ(y)
πref(y) , the model implicitly learns:

qt
θ(y<t , yt) = β logEπref(y |y≤t)e

1
β

rθ(y)

Advantages over MCTS
Bounded accuracy: qt

θs
≤ qt

θ ≤ qt
θh

Mitigates overestimation (hard) and
underestimation (soft) issues
No sampling noise

Compatible Objectives
Direct Preference Optimization (DPO)
Kahneman-Tversky Optimization (KTO)
Noise Contrastive Alignment (NCA)
Cross-Entropy (CE) Loss
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PRIME [72]: Overview

Process Reinforcement through Implicit Rewards

Key Innovation:
Use implicit process rewards from outcome labels
only
Enable online PRM updates without step-level
annotations
Scalable and efficient dense reward framework

Core Formula:

rϕ(yt) = β log
πϕ(yt |y<t)

πref (yt |y<t)

SFT Model

Policy Model Implicit PRM

Initialize

Online Update
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How PRIME Works

Algorithm Flow:
1 Initialize policy and PRM from SFT
2 Sample responses from policy
3 Get outcome rewards from verifier
4 Calculate implicit process rewards
5 Update PRM with outcome labels only
6 Compute advantages with dense rewards
7 Update policy with PPO

Fig. 62. Illustration of PRIME.
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Efficiency and Performance

Sample Efficiency:
2.5 more efficient than outcome-only
rewards
Faster convergence to high performance
Lower variance during training

Online PRM Update Benefits:
Prevents reward hacking
Maintains high PRM accuracy
No need for step-level annotations Fig. 63. 2.5 efficiency gain and 6.9% higher final performance
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TTRL [73]: Test-Time Reinforcement Learning

Current Limitations:
Large Reasoning Models (e.g., o1, DeepSeek-R1)
require expensive labeled data
Complex unlabeled questions continuously emerge
o3 achieves 75.7% on ARC-AGI-1 but only 4% on
ARC-AGI-2

The Vision:
Enable AI systems to self-evolve through experience
Learn from unlabeled test data
Push the boundaries of AI capabilities
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TTRL: Test-Time Reinforcement Learning

Key Innovation: Use majority voting to estimate labels and compute rewards without ground
truth
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TTRL Methodology

Algorithm:
1 Generate multiple outputs {y1, ..., yN}

from πθ(y |x)
2 Derive consensus output y∗ via majority

voting
3 Compute rewards:

r(yi , y∗) =

{
1, if yi = y∗

0, otherwise

4 Update policy:

θ ← θ + η∇θEy∼πθ [r(y , y∗)]

Why Does It Work?
Label Estimation: Majority voting
provides reliable pseudo-labels
Reward Robustness: "Lucky Hit"
phenomenon ensures high reward accuracy
Online Learning: Dynamic improvement of
supervision quality
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ProRL [74]: The Central Question

Core Research Question
Does reinforcement learning truly expand a model’s reasoning capabilities, or does it
merely amplify high-reward outputs already latent in the base model’s distribution?

Previous Claims:
RL doesn’t acquire new reasoning
capabilities
RL converges toward dominant output
distributions
Limited by short training periods

ProRL Hypothesis:
Prolonged RL training can discover novel
reasoning strategies
Extended training explores new solution
spaces
Diverse tasks enable better generalization
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Limitations of Previous Work

Methodological Constraints
1 Narrow Domain Focus: Overreliance on mathematics where models are often

overtrained
2 Premature Termination: RL training limited to hundreds of steps
3 Limited Task Diversity: Restricted evaluation across reasoning domains

ProRL’s Approach
Extended Training: More than 2,000 training steps
Diverse Tasks: Math, coding, STEM, logic puzzles, instruction following
Stable Training: KL divergence control + reference policy resetting
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ProRL: Implementation Details

Key Components
1 Base Algorithm: Group Relative Policy Optimization (GRPO)
2 Entropy Preservation: Decoupled clipping + dynamic sampling
3 Stability Control: KL divergence penalty + reference policy reset

LKL−RL(θ) = LGRPO(θ)− βDKL(πθ||πref )

Training Data (136K examples):
Math: 40K problems
Code: 24K problems
STEM: 25K problems
Logic Puzzles: 37K problems
Instruction Following: 10K problems

Training Setup:
16k GPU hours on H100s
Periodic reference resets
Context: 8K 16K tokens
Temperature: 1.2 (rollout)
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Training Dynamics

Sustained Improvement: Both Pass@1 and Pass@16 continue scaling
Entropy Preservation: Avoids collapse through multiple techniques
Strategic Resets: 8 training runs with periodic reference policy resets
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Does ProRL Discover New Reasoning Patterns?

Evidence for Novel Reasoning:
Creativity Index: Higher novelty in reasoning
trajectories
Low-to-High Performance: Dramatic
improvements on initially challenging problems
OOD Generalization: Strong performance on
unseen tasks

Key Pattern:

The Weaker the Start, the Stronger the Gain
RL expands reasoning boundaries most effectively
where base models initially struggle
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Three Training Regimes Identified

1 Diminished: Reduced diversity in high-performance domains
Pass@1 improves, Pass@128 decreases
Model becomes more confident but less exploratory

2 Plateau: Early saturation of RL benefits
Both Pass@1 and Pass@128 improve initially
Gains plateau with continued training

3 Sustained: Continued boundary expansion
Consistent improvements with prolonged training
Most evident in complex coding and novel reasoning tasks
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Out-of-Distribution Performance
Boxnet Task Example:

Base model: 0% success rate
RL model: 7.7% 58.6% (OOD)
Demonstrates genuine capability
expansion

Graph Coloring Scalability:
Trained on 10-node graphs
Tested on larger graphs (15-20 nodes)
Maintains superior performance

Pass@k Improvements

Significance
ProRL enables models to internalize abstract reasoning patterns that generalize beyond
training distribution
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Distribution Shifts in Reasoning

Codeforces Problems:
Initial: Concentrated near zero
Post-RL: Broader, higher success rates
Sustained exploration benefits

Family Relationships:
Base: Predominantly zero accuracy
RL: Peak at perfect accuracy
Novel reasoning challenge solved

Mathematical Upper Bound Analysis

Ex ,y∼D[pass@k] ≤ 1−
[
(1− Ex ,y∼D[ρx ])

2 + Var(ρx )
]k/2 (23)

ProRL generates sufficient ρx improvement to overcome variance increases, unlike previous
observations of declining pass@k during training.

Mingzhi Wang, Chengdong Ma, Yaodong Yang Alignment Methods for Language Models July 2025 245 / 261



Alignment with Verifiers ▷ Process Rewards ▷ ProRL: Prolonged Reinforcement Learning

Key Takeaways

Main Findings
1 ProRL discovers novel reasoning strategies beyond base model capabilities
2 Extended stable training is crucial for reasoning boundary expansion
3 Task diversity enables robust generalization across domains
4 Strategic training techniques (KL control, reference resets) enable prolonged

optimization

Empirical Evidence:
2,000+ training steps
136K diverse problems
State-of-the-art 1.5B model
Strong OOD performance

Broader Impact:
Reaffirms RL value for reasoning
Enables smaller, capable models
Opens new research directions
Challenges current limitations

Model available:
https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B
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Conclusion: The Evolution of Language Model Alignment

Key Takeaways
RLHF: Pioneered human preference learning but faces scalability challenges
Direct Alignment: DPO/IPO simplify training while maintaining effectiveness
General Preferences: Nash equilibrium approaches handle diverse human values
Reasoning Models: Test-time scaling and process rewards unlock new capabilities

Future2022 2025

RLHF
(InstructGPT)

DPO
(Simplification)

Nash-MD
(Game Theory)

o1/R1
(Reasoning)

ProRL
(Prolonged RL)

The future of AI alignment lies in models that can learn, reason,
and improve autonomously
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Thanks!
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