

Linear Transformers are Versatile In-Context Learners

Max Vladymyrov mxv@google.com

Key Findings

- Each layer of a linear transformer acts like a step in a complex optimization algorithm, similar to gradient descent.
- Linear transformers can learn to solve challenging problems, like linear regression with varying levels of noise.
- They discover effective optimization strategies that outperform standard methods.
- These strategies include adjusting step sizes based on noise levels and rescaling the solution.

Linear Transformer

• Linear Transformer updates each layer using

 $\left(\begin{array}{c} x_j^{l+1} \\ y_j^{l+1} \end{array}\right) := \sum_{k=1}^h \left[P_k^l \sum_{j=1}^n \left(\left(\begin{array}{c} x_j^l \\ y_j^l \end{array}\right) ((x_j^l)^\top, y_j^l) \right) Q_k^l \right]$

Johannes von Oswald jvoswald@google.com Mark Sandler sandler@google.com

Diagonal attention matrices

We also analysed even simpler variant of linear transformer with diagonal attention matrices. Since the elements $\boldsymbol{\mathcal{X}}$ are permutation invariant, a diagonal parameterization reduces each attention heads to just four parameters:

$$P_k^l = \begin{pmatrix} p_{x,k}^l I & 0\\ 0 & p_{y,k}^l \end{pmatrix}; \quad Q_k^l = \begin{pmatrix} q_{x,k}^l I & 0\\ 0 & q_{y,k}^l \end{pmatrix}.$$

Using reparametrization

$$\begin{split} w_{xx}^{l} &= \sum_{k=1}^{H} p_{x,k}^{l} q_{x,k}^{l}, \quad w_{xy}^{l} = \sum_{k=1}^{H} p_{x,k}^{l} q_{y,k}^{l}, \\ w_{yx}^{l} &= \sum_{k=1}^{H} p_{y,k}^{l} q_{x,k}^{l}, \quad w_{yy}^{l} = \sum_{k=1}^{H} p_{y,k}^{l} q_{y,k}^{l}. \end{split}$$

leads to the following diagonal layer updates:

$$\begin{split} x_i^{l+1} &= x_i^l + \boldsymbol{w}_{\boldsymbol{x}\boldsymbol{x}}^l \Sigma^l x_i^l + \boldsymbol{w}_{\boldsymbol{x}\boldsymbol{y}}^l y_i^l \alpha^l \\ y_i^{l+1} &= y_i^l + \boldsymbol{w}_{\boldsymbol{y}\boldsymbol{x}}^l \langle \alpha^l, x_i^l \rangle + \boldsymbol{w}_{\boldsymbol{y}\boldsymbol{y}}^l y_i^l \lambda^l, \end{split}$$

Each term controls the specific behavior of the updates:

- w_{yx}^l : how much x_i^l influences y_i^{l+1} . \circ Controls the gradient descent.
- w_{xx}^l : how much x_i^l influences x_i^{l+1} . \circ Controls the preconditioner strength.

Experiments

Linear Transformer-based methods:

- Full. Trains full parameter matrices.
- **Diag**. Trains diagonal parameter matrices
- **GD++**. An even more restricted diagonal variant that uses only w_{yx}^{l} and w_{xx}^{l} terms.

Rong Ge

rongge@cs.duke.edu

Baselines:

- Constant Ridge Regression (ConstRR). The noise variance is estimated using a single scalar value for all the sequences.
- Adaptive Ridge Regression (AdaRR). Estimate the noise variance via unbiased estimator:

 $\sigma_{
m est}^2 = rac{1}{n-d}\sum_{j=1}^n (y_j - \hat{y}_j)^2$, where \hat{y}_j represents the solution to the ordinary least squares.

- Tuned Adaptive Ridge Regression (TunedRR). Same as above, but after the noise is estimated, we tuned two parameters:
 - a max. threshold value for the estimated variance,
 - \circ $\,$ a multiplicative adjustment to the noise estimator.

Conclusions

- Each token $e_i = (x_i, y_i) \in \mathbb{R}^{d+1}$ consists of a feature vector $x_i \in \mathbb{R}^d$, and its corresponding output $y_i \in \mathbb{R}$.
- We append a query token $e_{n+1} = (x_t, 0)$ to the sequence, where x_t represents test data.
- The goal of in-context learning is to predict y_t for the test data x_t .

Noisy regression problem

For each input sequence au the input is given by:

- A ground-truth weight vector $w_{ au} \sim N(0, I)$.
- n input data points $x_i \sim N(0, I)$.
- Noise $\xi_i \sim N(0, \sigma_\tau^2)$ sampled with variance $\sigma_\tau \sim p(\sigma_\tau)$.

• Labels
$$y_i = \langle w_{ au}, x_i
angle + \xi_i$$

For a known noise level σ_{τ} , the best estimator for w_{τ} is provided by ridge regression:

$$L_{\rm RR}(w) = \sum_{i=1}^{n} (y_i - \langle w, x_i \rangle)^2 + \sigma_{\tau}^2 ||w||^2,$$

- w^l_{xy} : how much y^l_i influences x^{l+1}_i . \circ Adapting the step-sizes based on the noise.
- w_{yy}^l how much y_i^l influences y_i^{l+1} .
 - Adaptive rescaling based on the noise.

Jniform
$$\sigma_{\tau} \sim U(0, \sigma_{max})$$

- Linear transformers, even though they are simple, can be a surprisingly versatile in-context learners.
- They can discover effective optimization strategies that outperform standard methods.
- Transformers have the potential to automatically discover new and effective algorithms for various machine learning tasks.

We also consider problems where the noise variance $\sigma_{ au}$ is sampled from a given distribution $p(\sigma_{ au})$.

Linear transformers maintain linear regression model at every layer

Linear transformers are restricted to maintaining a linear regression model based on the input:

Theorem 4.1. Suppose the output of a linear transformer at *l*-th layer is $(x_1^l, y_1^l), (x_2^l, y_2^l), ..., (x_n^l, y_n^l), (x_t^l, y_t^l)$, then there exists matrices M^l , vectors u^l, w^l and scalars a^l such that

$$egin{aligned} x_i^{l+1} &= M^l x_i + y_i u^l, & x_t^{l+1} &= M^l x_t, \ y_i^{l+1} &= a^l y_i - \langle w^l, x_i
angle, & y_t^{l+1} &= -\langle w^l, x_t
angle. \end{aligned}$$