
Privacy-Efficacy Tradeoff of Clipped SGD with
Decision-dependent Data

Qiang Li, Michal Yemini, Hoi-To Wai

Dept of System Engineering and Engineering Management,
The Chinese University of Hong Kong

July 10, 2024

ICML2024 Workshop: Humans, Algorithmic Decision-Making and
Society: Modeling Interactions and Impact



Privacy Concerns in Model Training

▶ The training of prediction models hinges on the use of private
and sensitive user data such as credit history and customer’s
identity.

▶ Risk: many attack techniques can expose sensitive user data
using just the training history of stochastic gradient descent
(SGD) algorithms, such as,
▶ Membership inference attack
▶ Feature inference attack
▶ Model extraction attack...

launched by curious observers or adversary customers,
[Ghosh et al., 2009, Bassily et al., 2014].
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Real Example

▶ Example: online platforms (learner) collect data to train their
bot detection models. Conversely, advertisers use bots to
automate advertising campaigns such as clicking on ads and
visiting websites.

▶ Strategic Response of advertisers: to bypass bot-detecting
model, the advertiser trains a bot model, allowing them appear as
human users, and uses it to invert the predictions of the bot
detection model.

▶ Distribution Shift: user reacts to the changing models, also
known as performative prediction problem.
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Performative Prediction

▶ Performative Prediction refers to stochastic optimization problem
based on dynamical data distribution.

min
θ∈X

EZ∼D(θ)[ℓ(θ;Z)], (1)

where X is the feasible region, D(θ) is shift dist. induced by θ.

▶ Supervised Learning vs Perf. Pred.: D and D(θ).

▶ Related topics: game theory and Stackberg games.

▶ Performative stable solution:

θPS = argminθ∈X EZ∼D(θPS)[ℓ(θ;Z)]. (2)

i.e., there is no incident of gradient at θPS ,∥∥EZ∼D(θPS)[∇ℓ(θPS ;Z)]
∥∥ = 0
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Privacy Preserving ...

▶ Privacy-preserving algorithm: clipped SGD algorithm
[Abadi et al., 2016] is designed to address above challenge.

Projected clipped SGD algorithm

θt+1 = PX (θt − γt+1clipc (stoc. grad) + ζt+1)

where P(·) is projection operator, ζt+1 ∼ N (0, σ2
DPI) is noise.

▶ Clipping operator: designed to reduce grad. exposure
[Pascanu et al., 2013],

clipc(g) : g ∈ Rd 7→ min
{
1, c

∥g∥2

}
g, (3)

where c is clipping threshold.
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Research Gap

▶ Related works: [Koloskova et al., 2023] shows that clipped SGD
may only converge to a near critical points solution in stochastic
setting, due to the unavoidable bias introduced by clip operator.

▶ Most studies on clipped SGD algo. is in the absence of
performativity, i.e., ignoring the effects of the
decision-dependent distribution.

Question: What effect does performativity have on bias and
convergence of clipped SGD algorithms?

Our Answer: Projected Clipping SGD (PCSGD) algorithm
converges to a biased solution in expectation. We found bias
amplification effect, i.e., bias ∝ O(1/dist. shift sensitivity).
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Preliminaries

▶ (ε, δ)−differential privacy [Dwork and Roth, 2014]: M : D 7→ R
is a randomized mechanism. For adjacent inputs D,D′ ∈ D,
which differs by only 1 different sample, it holds that

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ. (4)

▶ (ε, δ) is called privacy budget, δ is probability of information
leakage.

▶ When ε ≈ 0, then Pr[M(D) ∈ S] ≈ Pr[M(D′) ∈ S], i.e., output
of M(·) does not vary whether a record is present or absent from
the system.
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Clipped SGD Algorithms

To ensure privacy, we study the following PCSGD scheme:

θt+1 = PX
(
θt−γt+1(clipc(∇ℓ(θt;Zt+1)) + ζt+1)

)
, (5)

▶ Fixed point θ∞ of PCSGD satisfies

EZ∼D(θ)[clipc(∇ℓ(θ;Z))] = 0.

▶ In general, θ∞ will leads to ∥E[∇ℓ(θ∞;Z)]∥ ≠ 0 and vice versa
due to clipping operator.

▶ Challenge: clipping operator is non-smooth and leads to

EZ∼D(θ)clipc(∇ℓ(θ;Z)) ̸= EZ∼D(θ)(∇ℓ(θ;Z))

In other words, the stochastic gradient is not unbiased estimation
of its expectation. Additionally, performativity will even
exacerbate this issue.

▶ Greedy deployment sampling scheme: Zt+1 ∼ D(θt).

8 / 16



Assumptions & Notations
Define the shorthand notations:

f(θ1,θ2) := EZ∼D(θ2)[ℓ(θ1;Z)], ∇f(θ1,θ2) := EZ∼D(θ2)[∇ℓ(θ1;Z)].

▶ A1: µ-strongly convex w.r.t. θ:

f(θ′; θ̄) ≥ f(θ; θ̄) + ⟨∇f(θ; θ̄ |θ′ − θ⟩+ (µ/2)
∥∥θ′ − θ

∥∥2 .
▶ A2: Maps ∇f(·; θ̄) and ∇ℓ(θ̄; ·) are L-Lipschitz:

∥∇f(θ1; θ̄)−∇f(θ2; θ̄)∥ ≤ L∥θ1 − θ2∥, ∀ θ1,θ2 ∈ X ,

∥∇ℓ(θ̄; z1)−∇ℓ(θ̄; z2)∥ ≤ L ∥z1 − z2∥ , ∀z1, z2 ∈ Z.

▶ A3: Wasserstein-1 distance:

W1(D(θ),D(θ′)) ≤ β∥θ − θ′∥.
▶ A4 : Uniform bound: There exists G ≥ 0 such that

sup
θ∈X ,z∈Z

∥∇ℓ(θ; z)∥ ≤ G

Note that A4 assumes bounded gradient but only on a compact set
X which is reasonable, see [Zhang et al., 2024].
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Main Results (I)

Define the following constants: c1 := 2(c2 +G2) + dσ2
DP,

C1 := (max{G− c, 0})2, µ̃ := µ− Lβ.

Theorem 1: Upper bound

Under A1-4. Suppose that β < µ
L , the step sizes {γt}t≥1 are

non-increasing and are sufficient small. Then, for any t ≥ 1,

E∥θt+1 − θPS∥2 ≤
t+1∏
i=1

(1− µ̃γi) ∥θ0 − θPS∥2 +
2c1
µ̃

γt+1 +
8C1

µ̃2︸︷︷︸
bias

,

▶ It indicates an asymptotic clipping bias of PCSGD and coincides
with the observation in [Koloskova et al., 2023] for non-decision
dependent distribution.

▶ When c ≥ G, then C1 = 0 and the bias vanishes. Our convergence
rate O(γt) coincides with [Drusvyatskiy and Xiao, 2023].
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Main Results (II)

Theorem 2: Lower bound

For any c ∈ (0, G), there exist ℓ(θ;Z) and D(θ) satisfying A1-4,
such that for all fixed-points of PCSGD θ∞ satisfying
EZ∼D(θ∞)[clipc(∇ℓ(θ∞;Z))] = 0, it holds that

∥θ∞ − θPS∥2 = Ω
(
1/(µ− Lβ)2

)
. (6)

▶ Provided that β < µ
L , Theorems 1 and 2 show that PCSGD

admits an unavoidable bias of Θ(1/(µ− Lβ)2).

Corollary 1: Differential Privacy Guarantee [Abadi et al., 2016]

For any ε ≤ T/m2, δ ∈ (0, 1), and c > 0, the PCSGD with greedy
deployment is (ε, δ)-DP after T iterations if we let

σDP ≥ c
√
T log(1/δ)/(mε).

▶ Assume that G > c and a constant step size is used in PCSGD.
To achieve minimum bias, we can compute γ⋆ = O(1/(µ̃T )).
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Numerical Simulation

Quadratic Minimization

▶ We consider a scalar performative risk problem

min
θ∈X

Ez∼D(θ)[(θ + az)2/2]

Distribution is set as D(θ) = {bZ̃i − βθ}mi=1 where Z̃i ∼ B(p) is
Bernoulli and a > 0, b > 0, p < 1/2.

▶ Performative stable solution: θPS = −p̄a
1−aβ , where p̄ = 1

m

∑m
i=1 Z̃i.

▶ Settings: p = 0.1, ε = 0.1, δ = 1/m, β ∈ {0.01, 0.05}, a =
10, b = 1, c = C1 = C2 = 1, m = 105. The step size is γt =

10
100+t

with the initialization θ0 = 5.
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Simulation (Cont’d)
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▶ Verifying Theorem 1 & 2: In left fig, PCSGD can not converge
to θPS due to bias which increases as β ↑.

▶ Trade off between bias and privacy budget: From middle fig.,
ϵ ↑ will leads to bias ↓. Also, optimal step size γ⋆ can achieve
min bias, non-opt step size γ = log(1/∆(µ))

µT has larger bias.

▶ Trade off between bias and dist. shift: From right fig., as the
sensitivity of distribution shift increases β ↑ µ

L , the bias of
PCSGD increases.
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Conclusion

▶ We consider the privacy performative prediction problem and
demonstrate that PCSGD can converge to a near-performative
stable solution.

▶ Key Observation: The method exploits the bias amplification
phenomenon caused by distribution shift.

▶ Limitation/Ongoing Work: Efforts are ongoing to reduce bias
to an approximation of zero.

Questions & Comments?
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