Privacy-Efficacy Tradeoff of Clipped SGD with Decision-dependent Data

Qiang Li, Michal Yemini, Hoi-To Wai

Dept of System Engineering and Engineering Management, The Chinese University of Hong Kong

July 10, 2024

ICML2024 Workshop: Humans, Algorithmic Decision-Making and Society: Modeling Interactions and Impact

Privacy Concerns in Model Training

- ▶ The training of prediction models hinges on the use of private and sensitive user data such as credit history and customer's identity.
- ▶ Risk: many attack techniques can expose sensitive user data using just the training history of stochastic gradient descent (SGD) algorithms, such as,
	- ▶ Membership inference attack
	- ▶ Feature inference attack
	- \blacktriangleright Model extraction attack...

launched by curious observers or adversary customers,

```
[Ghosh et al., 2009, Bassily et al., 2014].
```
Real Example

- \triangleright Example: online platforms (learner) collect data to train their bot detection models. Conversely, advertisers use bots to automate advertising campaigns such as clicking on ads and visiting websites.
- ▶ Strategic Response of advertisers: to bypass bot-detecting model, the advertiser trains a bot model, allowing them appear as human users, and uses it to invert the predictions of the bot detection model.
- ▶ Distribution Shift: user reacts to the changing models, also known as performative prediction problem.

Performative Prediction

▶ Performative Prediction refers to stochastic optimization problem based on dynamical data distribution.

$$
\min_{\boldsymbol{\theta} \in \mathcal{X}} \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta})} [\ell(\boldsymbol{\theta}; Z)], \tag{1}
$$

where X is the feasible region, $\mathcal{D}(\theta)$ is shift dist. induced by θ .

- **Supervised Learning vs Perf. Pred.:** \mathcal{D} and $\mathcal{D}(\theta)$.
- ▶ Related topics: game theory and Stackberg games.
- \blacktriangleright Performative stable solution:

$$
\boldsymbol{\theta}_{PS} = \arg \min_{\boldsymbol{\theta} \in \mathcal{X}} \ \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_{PS})} [\ell(\boldsymbol{\theta}; Z)]. \tag{2}
$$

i.e., there is no incident of gradient at θ_{PS} ,

$$
\left\|\mathbb{E}_{Z\sim\mathcal{D}(\boldsymbol{\theta}_{PS})}[\nabla\ell(\boldsymbol{\theta}_{PS};Z)]\right\|=0
$$

Privacy Preserving ...

▶ Privacy-preserving algorithm: clipped SGD algorithm [\[Abadi et al., 2016\]](#page-14-2) is designed to address above challenge.

Projected clipped SGD algorithm

$$
\boldsymbol{\theta}_{t+1} = \mathcal{P}_{\mathcal{X}} \left(\boldsymbol{\theta}_{t} - \gamma_{t+1} \mathsf{clip}_{c} \left(\mathsf{stoc. grad} \right) + \zeta_{t+1} \right)
$$

where $\mathcal{P}(\cdot)$ is projection operator, $\zeta_{t+1} \sim \mathcal{N}(\mathbf{0}, \sigma_\text{DP}^2 \boldsymbol{I})$ is noise.

▶ Clipping operator: designed to reduce grad. exposure [\[Pascanu et al., 2013\]](#page-15-0),

$$
\text{clip}_c(\boldsymbol{g}) : \boldsymbol{g} \in \mathbb{R}^d \mapsto \min\left\{1, \frac{c}{\|\boldsymbol{g}\|_2}\right\}\boldsymbol{g},\tag{3}
$$

where c is clipping threshold.

Research Gap

- ▶ Related works: [\[Koloskova et al., 2023\]](#page-15-1) shows that clipped SGD may only converge to a near critical points solution in stochastic setting, due to the unavoidable bias introduced by clip operator.
- ▶ Most studies on clipped SGD algo. is in the **absence of** performativity, i.e., ignoring the effects of the decision-dependent distribution.

Question: What effect does performativity have on bias and convergence of clipped SGD algorithms?

Our Answer: Projected Clipping SGD (PCSGD) algorithm converges to a biased solution in expectation. We found bias amplification effect, i.e., bias $\propto \mathcal{O}(1/\text{dist.}$ shift sensitivity).

Preliminaries

 \blacktriangleright (ε, δ) -differential privacy [\[Dwork and Roth, 2014\]](#page-14-3): $M : D \mapsto R$ is a randomized mechanism. For adjacent inputs $D, D' \in \mathcal{D},$ which differs by only 1 different sample, it holds that

$$
\Pr[\mathcal{M}(\mathsf{D}) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(\mathsf{D}') \in S] + \delta. \tag{4}
$$

- \blacktriangleright (ε, δ) is called privacy budget, δ is probability of information leakage.
- ▶ When $\varepsilon \approx 0$, then $\Pr[\mathcal{M}(D) \in S] \approx \Pr[\mathcal{M}(D') \in S]$, i.e., output of $\mathcal{M}(\cdot)$ does not vary whether a record is present or absent from the system.

Clipped SGD Algorithms

To ensure privacy, we study the following PCSGD scheme:

$$
\boldsymbol{\theta}_{t+1} = \mathcal{P}_{\mathcal{X}}(\boldsymbol{\theta}_t - \gamma_{t+1}(\text{clip}_c(\nabla \ell(\boldsymbol{\theta}_t; Z_{t+1})) + \zeta_{t+1})),
$$
 (5)

▶ Fixed point θ_{∞} of **PCSGD** satisfies

 $\mathbb{E}_{Z\sim\mathcal{D}(\boldsymbol{\theta})}[\mathsf{clip}_c(\nabla \ell(\boldsymbol{\theta};Z))] = \mathbf{0}.$

- ▶ In general, θ_{∞} will leads to $\mathbb{E}[\nabla \ell(\theta_{\infty}; Z)]$ \neq 0 and vice versa due to clipping operator.
- ▶ Challenge: clipping operator is non-smooth and leads to

 $\mathbb{E}_{Z\sim\mathcal{D}(\boldsymbol{\theta})}$ clip $_c(\nabla\ell(\boldsymbol{\theta};Z))\neq\mathbb{E}_{Z\sim\mathcal{D}(\boldsymbol{\theta})}(\nabla\ell(\boldsymbol{\theta};Z))$

In other words, the stochastic gradient is not unbiased estimation of its expectation. Additionally, performativity will even exacerbate this issue.

▶ Greedy deployment sampling scheme: $Z_{t+1} \sim \mathcal{D}(\theta_t)$.

Assumptions & Notations

Define the shorthand notations:

 $f(\theta_1, \theta_2) \coloneqq \mathbb{E}_{Z \sim \mathcal{D}(\theta_2)}[\ell(\theta_1; Z)], \ \ \nabla f(\theta_1, \theta_2) \coloneqq \mathbb{E}_{Z \sim \mathcal{D}(\theta_2)}[\nabla \ell(\theta_1; Z)].$ A1: μ -strongly convex w.r.t. θ :

 $f(\boldsymbol{\theta}'; \bar{\boldsymbol{\theta}}) \geq f(\boldsymbol{\theta}; \bar{\boldsymbol{\theta}}) + \langle \nabla f(\boldsymbol{\theta}; \bar{\boldsymbol{\theta}} \,|\, \boldsymbol{\theta}' - \boldsymbol{\theta} \rangle + (\mu/2) \, \|\boldsymbol{\theta}' - \boldsymbol{\theta}\|$ 2 .

▶ A2: Maps
$$
\nabla f(\cdot; \bar{\theta})
$$
 and $\nabla \ell(\bar{\theta}; \cdot)$ are *L*-Lipschitz:
\n
$$
\|\nabla f(\theta_1; \bar{\theta}) - \nabla f(\theta_2; \bar{\theta})\| \le L \|\theta_1 - \theta_2\|, \ \forall \ \theta_1, \theta_2 \in \mathcal{X},
$$
\n
$$
\|\nabla \ell(\bar{\theta}; z_1) - \nabla \ell(\bar{\theta}; z_2)\| \le L \ \|z_1 - z_2\|, \ \forall z_1, z_2 \in \mathbb{Z}.
$$

▶ A3: Wasserstein-1 distance:

 $W_1(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}(\boldsymbol{\theta}')) \leq \beta \|\boldsymbol{\theta} - \boldsymbol{\theta}'\|.$

▶ A4 : Uniform bound: There exists $G \geq 0$ such that

$$
\sup_{\boldsymbol{\theta}\in\mathcal{X},z\in\mathsf{Z}}\|\nabla\ell(\boldsymbol{\theta};z)\|\leq G
$$

Note that A4 assumes bounded gradient but only on a compact set X which is reasonable, see [\[Zhang et al., 2024\]](#page-15-2).

Main Results (I)

Define the following constants: $c_1 := 2(c^2 + G^2) + d\sigma_{\text{DP}}^2$, $\mathcal{C}_1 \vcentcolon= (\max\{G-c,0\})^2, \ \tilde{\mu} \vcentcolon= \mu-L\beta.$

Theorem 1: Upper bound

Under A1-4. Suppose that $\beta < \frac{\mu}{L}$, the step sizes $\{\gamma_t\}_{t\geq 1}$ are non-increasing and are sufficient small. Then, for any $t \geq 1$,

$$
\mathbb{E} \|\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_{PS}\|^2 \leq \prod_{i=1}^{t+1} (1 - \tilde{\mu}\gamma_i) \|\boldsymbol{\theta}_0 - \boldsymbol{\theta}_{PS}\|^2 + \frac{2c_1}{\tilde{\mu}} \gamma_{t+1} + \underbrace{\frac{8C_1}{\tilde{\mu}^2}}_{\text{bias}},
$$

- ▶ It indicates an asymptotic clipping bias of **PCSGD** and coincides with the observation in [\[Koloskova et al., 2023\]](#page-15-1) for non-decision dependent distribution.
- ▶ When $c \geq G$, then $C_1 = 0$ and the bias vanishes. Our convergence rate $\mathcal{O}(\gamma_t)$ coincides with [\[Drusvyatskiy and Xiao, 2023\]](#page-14-4).

Main Results (II)

Theorem 2: Lower bound

For any $c \in (0, G)$, there exist $\ell(\theta; Z)$ and $\mathcal{D}(\theta)$ satisfying A1-4, such that for all fixed-points of PCSGD θ_{∞} satisfying $\mathbb{E}_{Z\sim\mathcal{D}(\bm{\theta}_\infty)}[\mathsf{clip}_c(\nabla\ell(\bm{\theta}_\infty;Z))] = \mathbf{0},$ it holds that

$$
\|\boldsymbol{\theta}_{\infty}-\boldsymbol{\theta}_{PS}\|^2=\Omega\left(1/(\mu-L\beta)^2\right). \tag{6}
$$

▶ Provided that $\beta < \frac{\mu}{L}$, Theorems 1 and 2 show that PCSGD admits an unavoidable bias of $\Theta(1/(\mu-L\beta)^2)$.

Corollary 1: Differential Privacy Guarantee [\[Abadi et al., 2016\]](#page-14-2)

For any $\varepsilon \leq T/m^2$, $\delta \in (0,1)$, and $c > 0$, the PCSGD with greedy deployment is (ε, δ) -DP after T iterations if we let

$$
\sigma_{\text{DP}} \ge c\sqrt{T\log(1/\delta)}/(m\varepsilon).
$$

▶ Assume that $G > c$ and a constant step size is used in **PCSGD**. To achieve *minimum bias*, we can compute $\gamma^* = \mathcal{O}(1/(\tilde{\mu}T)).$

Numerical Simulation

Quadratic Minimization

 \triangleright We consider a scalar performative risk problem

$$
\min_{\boldsymbol{\theta} \in \mathcal{X}} \mathbb{E}_{z \sim \mathcal{D}(\boldsymbol{\theta})} [(\boldsymbol{\theta} + az)^2/2]
$$

Distribution is set as $\mathcal{D}(\bm{\theta})=\{b\tilde{Z}_i-\beta\bm{\theta}\}_{i=1}^m$ where $\tilde{Z}_i\sim\mathcal{B}(p)$ is Bernoulli and $a > 0, b > 0, p < 1/2$.

▶ Performative stable solution: $\bm{\theta}_{PS} = \frac{-\bar{p}a}{1-a\beta}$, where $\bar{p} = \frac{1}{m}$ $\frac{1}{m}\sum_{i=1}^m \tilde{Z}_i$.

► Settings: $p = 0.1$, $\varepsilon = 0.1$, $\delta = 1/m$, $\beta \in \{0.01, 0.05\}$, $a =$ $10, b = 1, c = C_1 = C_2 = 1, m = 10^5$. The step size is $\gamma_t = \frac{10}{100}$ $100 + t$ with the initialization $\theta_0 = 5$.

Simulation (Cont'd)

- ▶ Verifying Theorem 1 & 2: In left fig, PCSGD can not converge to θ_{PS} due to bias which increases as $\beta \uparrow$.
- \triangleright Trade off between bias and privacy budget: From middle fig., $\epsilon \uparrow$ will leads to bias \downarrow . Also, optimal step size γ^\star can achieve min bias, non-opt step size $\gamma = \frac{\log(1/\Delta(\mu))}{\mu T}$ has larger bias.
- \blacktriangleright Trade off between bias and dist. shift: From right fig., as the sensitivity of distribution shift increases $\beta \uparrow \frac{\mu}{L}$ $L\overline{L}$, the bias of PCSGD increases.

Conclusion

- ▶ We consider the privacy performative prediction problem and demonstrate that PCSGD can converge to a near-performative stable solution.
- \triangleright Key Observation: The method exploits the bias amplification phenomenon caused by distribution shift.
- ▶ Limitation/Ongoing Work: Efforts are ongoing to reduce bias to an approximation of zero.

Questions & Comments?

References I

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016). Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pages 308–318.

Bassily, R., Smith, A., and Thakurta, A. (2014). Private empirical risk minimization: Efficient algorithms and tight error bounds. In 2014 IEEE 55th annual symposium on foundations of computer science, pages 464–473. IEEE.

Drusvyatskiy, D. and Xiao, L. (2023). Stochastic optimization with decision-dependent distributions. Mathematics of Operations Research, 48(2):954–998.

Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends $\left(\widehat{R}\right)$ in Theoretical Computer Science, 9(3-4):211-407.

Ghosh, A., Roughgarden, T., and Sundararajan, M. (2009). Universally utility-maximizing privacy mechanisms. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 351–360.

References II

Koloskova, A., Hendrikx, H., and Stich, S. U. (2023). Revisiting gradient clipping: Stochastic bias and tight convergence guarantees. arXiv preprint arXiv:2305.01588.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In International conference on machine learning, pages 1310–1318. Pmlr.

Zhang, X., Bu, Z., Wu, Z. S., and Hong, M. (2024). Differentially private sgd without clipping bias: An error-feedback approach. In ICLR.