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Privacy Concerns in Model Training

» The training of prediction models hinges on the use of private
and sensitive user data such as credit history and customer'’s
identity.

> Risk: many attack techniques can expose sensitive user data

using just the training history of stochastic gradient descent
(SGD) algorithms, such as,

» Membership inference attack
» Feature inference attack
» Model extraction attack...

launched by curious observers or adversary customers,
[Ghosh et al., 2009, Bassily et al., 2014].
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Real Example

» Example: online platforms (learner) collect data to train their
bot detection models. Conversely, advertisers use bots to
automate advertising campaigns such as clicking on ads and
visiting websites.

> Strategic Response of advertisers: to bypass bot-detecting
model, the advertiser trains a bot model, allowing them appear as
human users, and uses it to invert the predictions of the bot
detection model.

» Distribution Shift: user reacts to the changing models, also
known as performative prediction problem.
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Performative Prediction

» Performative Prediction refers to stochastic optimization problem
based on dynamical data distribution.

min £ p(g)[£(6: 7)) (1)

where X is the feasible region, D(0) is shift dist. induced by 6.
» Supervised Learning vs Perf. Pred.: D and D(0).
Related topics: game theory and Stackberg games.

A\

» Performative stable solution:

Ops = argmingex Ezp(o,4)[0(0; 2)]. (2)

i.e., there is no incident of gradient at Opg,

|Ezp(op5)[VEUOPs; Z)]|| =0
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Privacy Preserving ...

> Privacy-preserving algorithm: clipped SGD algorithm
[Abadi et al., 2016] is designed to address above challenge.

Projected clipped SGD algorithm

011 = Px (6; — yi41clip, (stoc. grad) + (1)
where P(-) is projection operator, (i1 ~ N(0,03p1) is noise.

» Clipping operator: designed to reduce grad. exposure
[Pascanu et al., 2013],

clip.(g) : g € R? — min {1, m} g, (3)

where c is clipping threshold.
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Research Gap

» Related works: [Koloskova et al., 2023] shows that clipped SGD
may only converge to a near critical points solution in stochastic
setting, due to the unavoidable bias introduced by clip operator.

» Most studies on clipped SGD algo. is in the absence of
performativity, i.e., ignoring the effects of the
decision-dependent distribution.

Question: What effect does performativity have on bias and
convergence of clipped SGD algorithms?

Our Answer: Projected Clipping SGD (PCSGD) algorithm
converges to a biased solution in expectation. We found bias
amplification effect, i.e., bias oc O(1/dist. shift sensitivity).
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Preliminaries

» (e,0)—differential privacy [Dwork and Roth, 2014]: M : D +— R
is a randomized mechanism. For adjacent inputs D, D’ € D,
which differs by only 1 different sample, it holds that

Pr[M(D) € S] < €€ Pr[M(D’) € S] + 4. (4)

» (e,0) is called privacy budget, 0 is probability of information
leakage.

» When € ~ 0, then Pr[M(D) € S] = Pr[M(D’) € 5], i.e., output
of M(-) does not vary whether a record is present or absent from
the system.
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Clipped SGD Algorithms

To ensure privacy, we study the following PCSGD scheme:
i1 = P (0: —ve41(clip,(VU(Oy; Zi11)) + Civ1)), (5)

» Fixed point 8., of PCSGD satisfies
Ez~p(g)lclip.(VL(6; Z))] = 0.

» In general, O will leads to ||E[V{(0; Z)]|| # 0 and vice versa
due to clipping operator.

» Challenge: clipping operator is non-smooth and leads to

Ez~p@e)clipc(VEU(0; Z)) # Ezpe)(VL(O; Z))
In other words, the stochastic gradient is not unbiased estimation

of its expectation. Additionally, performativity will even
exacerbate this issue.

» Greedy deployment sampling scheme: Z; 1 ~ D(6;).
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Assumptions & Notations
Define the shorthand notations:

f(01,02) :=Ez p6,)[l(01;Z)], V[f(0:1,02):=FEz p,) [VIO:1;7Z)].
> Al: p-strongly convex w.r.t. 6:

£(6';0) > £(6:0) + (V/(6:06' —0)+ (n/2)]|6' — 6.

» A2: Maps V£(-;0) and V{(;-) are L-Lipschitz:

IVf(61;0) — Vf(02;0)| < L||61 — 02|, V 61,0, € X,

V4(0; 21) — V(O; 20)|| < Lllz1 — 22|, V21,20 € Z.
» A3: Wasserstein-1 distance:

WA(D(6), D(8')) < Bl — 0],
» A4 : Uniform bound: There exists G > 0 such that
sup _[[VU(6; 2)| < G

€eX,zeZ
Note that A4 assumes bounded gradient but only on a compact set
X which is reasonable, see [Zhang et al., 2024].
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Main Results (I)
Define the following constants: ¢ := 2(c? + G?) + dodp,
C1 := (max{G —¢,0})?, ji:=p— Lp.
Theorem 1: Upper bound

Under Al-4. Suppose that § < £, the step sizes {;}:>1 are
non-increasing and are sufficient small. Then, for any ¢ > 1,

t+1
8C
E|6:11 — 6ps]|® < H (1 — fivi) 160 — Ops]|* + 7%“ + ~21’
=1 H \/
bias

» It indicates an asymptotic clipping bias of PCSGD and coincides
with the observation in [Koloskova et al., 2023] for non-decision
dependent distribution.

» When ¢ > G, then C; = 0 and the bias vanishes. Our convergence
rate O(+;) coincides with [Drusvyatskiy and Xiao, 2023].
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Main Results (II)

Theorem 2: Lower bound

For any ¢ € (0,G), there exist £(6; Z) and D(0) satisfying Al-4,
such that for all fixed-points of PCSGD 6, satisfying

Bz p@6.0)[clip.(VE(00; Z))] = 0, it holds that

1600 — Ops|® = (1/(1 — LB)?) . (6)

> Provided that § < %, Theorems 1 and 2 show that PCSGD
admits an unavoidable bias of ©(1/(u — LB3)?).

Corollary 1: Differential Privacy Guarantee [Abadi et al., 2016]

For any ¢ < T/m2, 9 €(0,1), and ¢ > 0, the PCSGD with greedy
deployment is (e, d)-DP after T iterations if we let

opp > ¢y/T'log(1/8)/(me).

» Assume that G > ¢ and a constant step size is used in PCSGD.
To achieve minimum bias, we can compute v* = O(1/(aT)).
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Numerical Simulation

Quadratic Minimization
» We consider a scalar performative risk problem

inE 6 2/2
minE,.pe) (6 + a2)"/2]
Distribution is set as D(0) = {bZ; — 50}, where Z; ~ B(p) is
Bernoulli and @ > 0,6 > 0, p < 1/2.

» Performative stable solution: Opg = %, where p = % Zﬁl Zl-.
» Settings: p=0.1,e =0.1,6 = 1/m, 8 € {0.01,0.05},a =
10

10,b=1,c=Cy = Cy =1, m = 10°. The step size is v = 15055
with the initialization 6y = 5.
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Simulation (Cont'd)

PCSGD f=0.01
—— PCSGD =0.03
—— PCSGD 8=0.05
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» Verifying Theorem 1 & 2: In left fig, PCSGD can not converge

to Opg due to bias which increases as 5 1.
Trade off between bias and privacy budget: From middle fig.,

| 2

€ T will leads to bias |. Also, optimal step size v* can achieve

min bias, non-opt step size v =
Trade off between bias and dist. shift: From right fig., as the

log(1/A(w))
ur

has larger bias.

sensitivity of distribution shift increases 5 1 %, the bias of
PCSGD increases.

13/16



Conclusion

» We consider the privacy performative prediction problem and
demonstrate that PCSGD can converge to a near-performative
stable solution.

> Key Observation: The method exploits the bias amplification
phenomenon caused by distribution shift.

> Limitation/Ongoing Work: Efforts are ongoing to reduce bias
to an approximation of zero.

Questions & Comments?
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