
Lean4trace: Data augmentation for neural
theorem proving in Lean

Vasilii Nesterov1, Yermek Kapushev2, Mikhail Burtsev3

1Moscow Institute of Physics and Technology, 2Yandex, 3London Institute for Mathematical Sciences

Problem statement and motivation

• PROBLEM: training data for formal theorem proving is very
scarce.

• SOLUTION: data augmentation.
We release Lean4tracea – tool for data exctration from Lean 4
sources. Its advantages are:
• Deep integration into Lean 4 compiler. Lean4trace works along

with Lean 4 compiler and has full access to the internal state of
the compiler.

• Ability of proof modification on-the-fly. It allows us to augment
data by modifying existing proofs.

• Small overhead of RAM in comparison with other tools.

Augmentation 1: Tactic decomposition

• Human-written proofs are often compressed, meaning that we can
potentially extract more than one proof state from a single tactic.
We take two most frequent tactics in Mathlib: rw and simp and
decompose its complex applications into elemental ones.

• rw applies given rules in given order, so the decomposition is
simple.

• simp applies rules in arbitrary order, so Breadth-First-Search is
used.

• By this we augment the dataset with all intermediate proof
states.

Figure 1:Decomposition of the rw and simp tactics. In the original proof, the
proof state s2 is obtained by applying simp [h1, h2, h3] in state s1. Using
BFS, we find a sequence simp [h2]; simp [h1]; simp [h2] which also leads
to s2. In this example, h2 is used twice, and h3 can be omitted. Such situations
actually occur in Mathlib proofs.

ahttps://github.com/vasnesterov/Lean4trace

Comparison with LeanDojo extraction

Our tool works faster and requires less RAM while extracting more
proof states and allowing augmentations.

Dataset # proof states Time RAM, GB
LeanDojo tracing 273k 1 h 48
Canonical (our tracing) 352k 31 min 17
rw decomposition 110k 34 min 18
simp decomposition 37.7k 11 h 24
Automatic tactics 318k 7 days 10

Table 1:Resources required for tracing.

Augmentation 2: Automatic tactics

• Some tactics in Lean are designed for non-trivial proof
automation and require no guidance from the user. We test such
tactics against every proof state in augment dataset with all
successful applications (i.e. when the tactic finish the proof).

• Statistics shows that automatic tactic are used far rarely than can
be (see below). In total, automatic tactics can close 23.6% goals.

Automatic tactic Solved goals, % Frequency in source, %
aesop 21.8 0.13
simp_all 16.6 <0.01
simp_arith 9.6 <0.01
tauto 8.9 0.08
solve_by_elim 7.8 0.02
norm_num 5.6 0.02
abel 1.5 0.08
omega 1.4 0.01
nlinarith 1.1 0.01

Table 2:Number of goals can be solved by auto tactics.

Results in theorem proving

• We use the same training/evaluation pipeline as with LeanDojoa,
but vary training data.

• Both augmentations improves quality on Mathlib dataset.
• We achieve best known Pass@1 with very small model (only

299M parameters).

Model & training data Mathlib MiniF2F
ReProver

LeanDojo data 48.6 26.5
Canonical 56.3 35.6
Canonical + Tactics decomposition 58.0 30.0
Canonical + Automatic tactics 57.6 33.6

Thor + expert iteration 35.2
COPRA + GPT-4 30.7
Thor 29.9
Lean Expert Iteration 29.6

Table 3:Pass@1 for theorem proving.

asee "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models" paper:
https://arxiv.org/abs/2306.15626


