Leand4trace: Data augmentation for neural
theorem proving in Lean

Vasilii Nesterov!, Yermek Kapushev?, Mikhail Burtsev’

Yandex

"Moscow Institute of Physics and Technology, ?Yandex, “London Institute for Mathematical Sciences

Problem statement and motivation

e PROBLEM: training data for formal theorem proving is very
scarce.

e SOLUTION: data augmentation.

We release Leandtrace? — tool for data exctration from Lean 4
sources. Its advantages are:

e Deep integration into Lean 4 compiler. Leandtrace works along
with Lean 4 compiler and has full access to the internal state of
the compiler.

e Ability of proof modification on-the-fly. It allows us to augment
data by modifying existing proofs.

e Small overhead of RAM in comparison with other tools.

Augmentation 1: Tactic decomposition

e Human-written proots are often compressed, meaning that we can
potentially extract more than one proof state from a single tactic.
We take two most frequent tactics in Mathlib: rw and simp and
decompose its complex applications into elemental ones.

e rw applies given rules in given order, so the decomposition is
simple.

e simp applies rules in arbitrary order, so Breadth-First-Search is
used.

e By this we augment the dataset with all intermediate proof
states.

[rw [a, b, c]] :} rw [a]; rw [b]; rw [c]

(sv ©
simp [h1, h2, h3] >

simp [h1] / simp [h2]] simp [h3

(simp [ho] | simp [h1],/ simp [h2]| simp [h3]

simp [h1] <

simp [h2]

Nalhiale” /Q ®

simp [h1

Figure 1:Decomposition of the rw and simp tactics. In the original proof, the
proof state s is obtained by applying simp [hi, ho, hs] in state s7. Using
BFS, we find a sequence simp [ho]; simp [h{]; simp [ho] which also leads
to s9. In this example, ho is used twice, and hg can be omitted. Such situations

actually occur in Mathlib proofs.

*https:/ /github.com /vasnesterov/Lean4trace

Comparison with LeanDojo extraction

Our tool works faster and requires less RAM while extracting more
proof states and allowing augmentations.

Dataset # proof states Time RAM, GB
LeanDojo tracing 273k 1 h 48
Canonical (our tracing) 352k 31 min 17
rw decomposition 110k 34 min 18
simp decomposition 37.7k 11 h 24
Automatic tactics 318k 7 days 10

Table 1:Resources required for tracing.

Augmentation 2: Automatic tactics

e Some tactics in Lean are designed for non-trivial proot
automation and require no guidance from the user. We test such
tactics against every proot state in augment dataset with all
successful applications (i.e. when the tactic finish the proof).

e Statistics shows that automatic tactic are used far rarely than can
be (see below). In total, automatic tactics can close 23.6% goals.

Automatic tactic Solved goals, % Frequency in source, %

aesop 21.8 0.13
simp all 16.6 <0.01
simp arith 9.6 <0.01
tauto 8.9 0.08
solve by elim 7.8 0.02
norm num 5.6 0.02
abel 1.5 0.08
omega 1.4 0.01
nlinarith 1.1 0.01

Table 2:Number of goals can be solved by auto tactics.

Results in theorem proving

o We use the same training/evaluation pipeline as with LeanDojo?,
but vary training data.

e Both augmentations improves quality on Mathlib dataset.

e We achieve best known Pass@1 with very small model (only
299M parameters).

Model & training data Mathlib MiniF2F

ReProver

LeanDojo data 48.6 26.95
Canonical 56.3 35.6
Canonical 4+ Tactics decomposition 58.0 30.0
Canonical + Automatic tactics H7.6 33.6
Thor + expert iteration 35.2
COPRA + GPTH4 30.7
Thor 29.9
Lean Expert Iteration 29.6

Table 3:Pass@1 for theorem proving.

?see "LeanDojo: Theorem Proving with Retrieval-Augmented Language Models" paper:
https://arxiv.org/abs/2306.15626

