PutnamBench: A Multilingual Competition-Mathematics Benchmark for Theorem Proving

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush Thakur, Swarat Chaudhuri UT Austin

ICML AI4Math Workshop: Best Paper Award

Motivation

- Want to benchmark olympiad-level mathematical reasoning
- MiniF2F (488)
 - \odot Some problems from MATH, formalized
 - \odot Some AMC/AIME/IMO problems
- FIMO (149)

 \circ IMO shortlist problems

Motivation II

- William Lowell Putnam Mathematical Competition:

 taken by 1000s of undergraduate students yearly in North America
 problems require knowledge from a broad range of topics in undergrad curriculum (analysis, abstract algebra, ..)
 - \odot Correlated with IMO: IMO medalists are usually top performers

PutnamBench

- Formalizations of Putnam problems from competitions 1962 -2023
- 640 formalized in Lean 4 & Isabelle, 417 formalized in Coq
- Many problems rely on mathematical theory developed in Mathlib, the HOL library, and various Coq repositories

PutnamBench

Benchmark	#	Natural Language	Lean	Isabelle	Coq	Factored Solution
MINIF2F	488	\checkmark	\checkmark^{\dagger}	\checkmark		
PROOFNET	371	\checkmark	\checkmark^{\dagger}			N/A
Fimo	149	\checkmark	\checkmark^{\dagger}			
PUTNAMBENCH	640	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Putnam 2006 B2. Prove that, for every set $X = \{x_1, x_2, \ldots, x_n\}$ of *n* real numbers, there exists a nonempty subset *S* of *X* and an integer *m* such that

$$\left|m + \sum_{s \in S} s\right| \le \frac{1}{n+1}.$$

Putnam 2006 B2. Prove that, for every set $X = \{x_1, x_2, \ldots, x_n\}$ of *n* real numbers, there exists a nonempty subset *S* of *X* and an integer *m* such that

$$\left| m + \sum_{s \in S} s \right| \le \frac{1}{n+1}.$$

(a) theorem putnam_2006_b2
(n :
$$\mathbb{N}$$
)
(npos : n > 0)
(X : Finset \mathbb{R})
(hXcard : X.card = n)
: ($\exists S \subseteq X, S \neq \emptyset \land \exists m : \mathbb{Z}, |m + \Sigma s in S, s| \leq 1 / (n + 1)$)

Putnam 2006 B2. Prove that, for every set $X = \{x_1, x_2, \ldots, x_n\}$ of *n* real numbers, there exists a nonempty subset *S* of *X* and an integer *m* such that

$$\left| m + \sum_{s \in S} s \right| \le \frac{1}{n+1}.$$

(b) theorem putnam_2006_b2: fixes n :: nat and X :: "real set" assumes npos: "n > 0" and hXcard: "finite X \land card X = n" shows " \exists S \subseteq X. (S \neq {}) \land (\exists m :: int. $|m + (\Sigma \ s \in S. \ s)| \le 1 / (n + 1))"$ (a) theorem putnam_2006_b2 (n : \mathbb{N}) (npos : n > 0) (X : Finset \mathbb{R}) (hXcard : X.card = n) : ($\exists S \subseteq X, S \neq \emptyset \land \exists m : \mathbb{Z}, |m + \Sigma s \text{ in } S, s| \leq 1 / (n + 1)$)

Putnam 2006 B2. Prove that, for every set $X = \{x_1, x_2, \ldots, x_n\}$ of *n* real numbers, there exists a nonempty subset *S* of *X* and an integer *m* such that

$$\left| m + \sum_{s \in S} s \right| \le \frac{1}{n+1}.$$

(b) theorem putnam_2006_b2: fixes n :: nat and X :: "real set" assumes npos: "n > 0" and hXcard: "finite X \land card X = n" shows " \exists S \subseteq X. (S \neq {}) \land (\exists m :: int. $|m + (\Sigma \ s \in S. \ s)| \le 1 / (n + 1))$ "

(a) theorem putnam_2006_b2
(n :
$$\mathbb{N}$$
)
(npos : n > 0)
(X : Finset \mathbb{R})
(hXcard : X.card = n)
: ($\exists S \subseteq X, S \neq \emptyset \land \exists m : \mathbb{Z},$
|m + Σ s in S, s| $\leq 1 / (n + 1)$)
(c) Theorem putnam_2006_b2
(n : nat)
(npos : gt n 0)
(X : list R)
(hXcard : length X = n)
: exists (presS: R -> Prop) (m: Z) (S: list R),
(neq (length S) 0) /\ (forall (x: R),
In x S <-> (In x X /\ presS x))
/\ (Rabs (IZR m + (fold_left Rplus S 0))

<= 1 / INR (n + 1)).

Evaluations

 PutnamBench is hard, no test methods solve >1% of problems.

PUTNAMBE	NCH: Lean	PUTNAMBENCH: Isabelle		PUTNAMBENCH: Coq		
Method	Success Rate	Method	Success Rate	Method	Success Rate	
GPT-4 COPRA ReProver (+r) ReProver (-r)	1/640 1/640 0/640 0/640	GPT-4 DSP Sledgehammer	1/640 4/640 3/640	GPT-4 COPRA Tactician CoqHammer	1/417 1/417 0/417 0/417	

Conclusion

- We believe progress on PutnamBench will require significant breakthroughs in:
 - 1. Lemma Synthesis & Proof Planning
 - 2. Retrieval from & using existing formal maths libraries

