Hallmarks of Optimization Trajectories

in Neural Networks & LLMs: Directional Exploration and Redundancy

Sidak Pal Singh, Bobby He, Thomas Hofmann, Bernhard Schölkopf

"Implicit Optimization Trajectories \iff \text{Loss Landscapes}

bias" Are marks of regularity visible in the optimization trajectories?

Fundamental Questions:

- Q. How are the optimization trajectories structured?
 - **Q.** Do they have a lot of twists and turns, or are they straight and direct?
 - Q. And does this depend on the phase of optimization?

Methodology: Trajectory Map

Take T checkpoints & arrange them in a matrix $\Theta \in \mathbb{R}^{T \times p}$, where p is # parameters

Form a matrix \mathbf{C} of cosine-similarities $\langle \theta_i, \theta_j \rangle$

$$(\mathbf{C})_{ij} = \frac{\langle \theta_i, \theta_j \rangle}{\|\theta_i\| \|\theta_j\|}$$

Compute the Mean Directional Similarity $\omega := \frac{1}{T^2} \mathbf{1}_T^\mathsf{T} \mathbf{C} \mathbf{1}_T$

Trajectory Maps for LLMs of increasing size

- GPT Neo-X models from Pythia: across 3 orders of magnitude
- MDS increases from 0.65 to 0.82

Key Insights:

Cosine Similarity

- Significant directional redundancy is present across a range of LLMs (as well as Vision models)
- Scale seems to regularize the directional complexity of the trajectories
- Directional Redundancy can be tapped by tuning a handful of scalars (BN/LN parameters)
- Scale homogenises the Q, K, V directional dynamics across depth

Exploiting the Directional Redundancy for efficient optimization (ImageNet results in the paper) Trajectory Map: ResNet20, CIFAR10 Training just Scalars BatchNorm only Bascline Matches performance with

Trajectory Map: ResNet20, CIFAR10 Training just Scalars Matches performance with a handful parameters; while affording savings in compute & memory Checkpoint Index Training just Scalars Matches performance with a handful parameters; while affording savings in compute & memory

Layerwise Q, K, V dynamics

Middle Layers converge the last directionally