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Questions on In-Context Learning (ICL)

= Whyis for ICL so effective?

= How does during pretraining contribute to ICL?
= What is the role of learned by MLP layers?

= How is ICL as a learning algorithm?

We develop approximation & generalization analyses for ICL
from the viewpoint of nonparametric statistical learning theory!



Setup: Nonparametric Regression /\
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Setup: MLP+Attn Transformer

= F5(x) + &
X () — (asg) ., z®), 70
m ini . SORO 1, .1.d. , ’
Pretraining data: T tasks Fg.,t € [T], ni.i.d.samples S (y() ,y,(f))T _®
» x feeds into N-dim. DNN ¢ € Fu prompt query
= approximation ability |9l < By, [|[¢ — &5lloe <N
= covering entropy V(Fn, |||z, €) KQ matrices
n J
~ . 1 T+T 1/~
= LSA layer output fo(X,y, @) = clipg( — > yxé(zx) T 6(2) |, params © = (I',¢)
k=1

I 2
* Learn ERM estimator © — arg min — >y (g(” ~ fo(X, y(t),i’(t)))
S I t=1

(for optimization dynamics in this setting, see our ICML oral paper)



Upper Bound for In-Context Risk
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ICL is Minimax Optimal in Besov Space

= Task class: unit ball in Besov space F° =U(B; (X)), p € [2,00], g € [0,00], a > d/p

= Assumptions are verified with r = 1/2,s = a/d if Px has bounded

Captures spatial inhomogeneity in smoothness, generalizes Hélder & Sobolev spaces

In the supervised setting, DNNs achieve the optimal rate while fixed-kernel methods cannot

Natural basis: B-spline wavelets

Multiresolution analysis: forms hierarchy ordered by resolution k
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ICL is Minimax Optimal in Besov Space

= We apply approximation theory of deep ReLU networks [Suzuki, 19] to obtain:

. o  NlogN = N?logN
RO) SN %+ —— 4+ ——2

2a+2d

Hence if T > nZatd, N = nzra, |CL achieves the optimal rate n~ 777 up to logn.

= LLM pretraining data is nearly infinite in practice: justifies the effectiveness of
ICL at large scales with only few-shot examples

= Scales suboptimally for small T: task diversity threshold [Raventos, 23]

= Curse of dimensionality can be avoided by extending to anisotropic Besov space




Pretraining can Improve ICL Complexity

= Suppose the (unknown) basis is chosen from a wider class U(B; (X)), 7 < «

= Increased difficulty: complexity of regression is a priori lower bounded by n~ 7+

= For ICL this manifests as increased entropy of Fx which must be more powerful,
however this burden is entirely carried by T
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If T>n't%=7"" N =<n%r, ICLachievesthe rate n~ 73 logn, improving upon
the a priori rate by encoding information on the coarser basis during pretraining.




Sequential Input and Transformers

= \We also study unbounded sequence inputs z € R“*>°, e.g. entire documents

= Task class: piecewise y-smooth class [Takakura, Suzuki, 23] of smoothness a € R

d X oo
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= positions of important tokens vary depending on input, requiring dynamical feature extraction

= 7 can be mixed or anisotropic smoothness with o' = maxa;;, (> ozz._jl)_]L

DNN class Fy: deep multi-head sliding-window Transformer networks

Under suitable decay and regularity assumptions, ICL achieves the optimal rate:
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Information-Theoretic Lower Bound

= We also obtain lower bounds in both n, T by extending the Yang-Barron method
and apply to the previous setups

= Holds for any meta-learning scheme for the given regression problem

Let Q1,Q2 be e,1,2,2-covering numbers of Fy,suppPz and M be the §,-packing
number of F° satisfying

1 1
252 (n(T+ 1)0%5%, 1T 02715721 2) <log @1 +logQs < 3 log M, 4log2 <logM
o ’ =
- . , ~ 1
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