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Introduction

• Objective of NAS is to automate designing of neural networks


• Traditional NAS methods use evolutionary algorithms and reinforcement 
learning (heavy computation burden)


• Differentiable NAS1 is an attractive alternative that incorporates 
differentiability in the search process hence increase efficiency



Differentiable NAS

A cell is a directed acrylic 
graph consisting  (=4 here) 

nodes with unknown 
operations (convolution, 

skip-connect etc.) 

N
A super-network is assumed 
where output of each node is 

an weighted average of  
operations 

K The weights are learned 
as a part of the training

An architecture is 
selected by choosing the 

operators with the 
maximum weights

Fig.1: Schematic of differentiable NAS1 



Differentiable NAS

• The differentiable NAS objective function:





 are the weights of the operators and the weights (and biases) of the 
network


• The loss is differentiable w.r.t the parameters and therefore they can be 
learned with existing gradient based tools


min
α

ℒval(α, W*) s . t . W* = arg min
W

ℒtrain(α, W)

α, W



A Bayesian Framework
• We propose a unified Bayesian framework for the architecture search — 











 is the number of edges, and , a binary matrix, is introduced to select from 
the space of architectures


•  The prior for  is set to ensure that it enforces a mode where every edge has one 
operator ( )

π(α, W, Γ) ∝ π(α, W |Γ)π(Γ)

π(α, W |Γ) ∝ e−ℒ(α(Γ),W(Γ)|Γ)

π(Γ) ∝
nedge

∏
m=1

π(γm) =
nedge

∏
m=1

e−c|γm|1{|γm|>0}(γm)

nedge Γ

Γ
|γm | = 1



BPNAS algorithm

• Our goal is to learn— 


• Difficult to find this MAP estimate from the joint distribution of discrete and 
continuous random variable 


• We devise an algorithm to prune out less important operators based on the 
weight matrix 

(α̂MAP, ŴMAP, Γ̂MAP) = arg max
α,W,Γ

π(α, W, Γ)

α



BPNAS algorithm
Bayesian Progressive architecture search (BPNAS): 

Input: An initial super-network ( ) with architecture parameters  , weights , posterior distribution , and a 
threshold 


While  for some :


  Update  by stochastic gradient descent


  If  holds:


    Select  and set 


    Reset 


Output: An architecture  with a single operation for each edge.

Γ = 1 α W π(W, α, Γ)
δ

| |γm | |0 > 1 k

W, α

| |θ(αm) −
1||γm||0

| |γm | |0
| |2 ≥ δ

(l, m) = argmin{(l′￼,m′￼):Γl′￼m′￼=1}αl′￼m′￼
Γl′￼m′￼

= 0

α

Γ

• We chose θ(αm) ∼ Dirichlet(αm)



Architecture Ensemble

• Our Bayesian framework enables efficient 
method to sample architectures from the 
posterior


• Upon convergence to an architecture , we 
restart the algorithm  times by randomly 
sampling an edge  and set 


• We perform this (in parallel) to build an ensemble 
of architectures

Γ̂
N

s γs = 1

Fig.2: An ensemble in NAS-Bench-2012 



Results

Methods
CIFAR-10 CIFAR-100 ImageNet

Test Epochs Test Epochs Test Epochs

ResNet 93.97 100 70.86 100 43.63 100

DrNAS3 94.36 ± 0.0 100 71.00 ± 1.3 100 46.34 ± 0.0 100

BPNAS 94.18 ± 0.3 63 73.40 ± 0.2 50 46.34 ± 0.0 26

Optimal 94.37 - 73.51 - 47.31 -

• On CIFAR-10 and ImageNet dataset, BPNAS performs similarly to the state-of-the-art while 
outperforming on CIFAR-100


• Since BPNAS used pruning it converges to the final architecture faster (~70% less epochs on ImageNet)

Architecture search



Results

Methods CIFAR-10 CIFAR-100 ImageNet

NES-RS4 94.17 ± 0.3 74.42 ± 0.8 45.66 ± 1.7

NESBS5 94.08 ± 0.1 75.00 ± 0.2 47.32 ± 0.4

BPNAS 95.10 ± 0.3 77.47 ± 1.0 50.27 ± 0.5

• On all datasets, BPNAS ensemble outperforms all the state-of-the-art architecture ensemble 
algorithms

Architecture Ensemble



Thank you!
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