BPNAS: Bayesian Progressive Neural Architecture Search

Hyunwoong Chang^{1,*}, Anirban Samaddar^{2,*}, Sandeep Madireddy^{2,†}

¹ Texas A&M University, ² Argonne National Laboratory,

^{*} Equal contribution, [†] Corresponding author

Anirban Samaddar

Introduction

- Objective of NAS is to automate designing of neural networks
- Traditional NAS methods use evolutionary algorithms and reinforcement learning (heavy computation burden)
- Differentiable NAS¹ is an attractive alternative that incorporates differentiability in the search process hence increase efficiency

Differentiable NAS

A cell is a directed acrylic graph consisting N (=4 here) nodes with unknown operations (convolution, skip-connect etc.)

A super-network is assumed where output of each node is an weighted average of Koperations

Fig.1: Schematic of differentiable NAS¹

Differentiable NAS

• The differentiable NAS objective function: $\min_{\alpha} \mathscr{L}_{val}(\alpha, W^*) \text{ s.t. } W^* = ar$

 α, W are the weights of the operat network

 The loss is differentiable w.r.t the parameters and therefore they can be learned with existing gradient based tools

$$* = \arg\min_{W} \mathscr{L}_{\text{train}}(\alpha, W)$$

 α , W are the weights of the operators and the weights (and biases) of the

A Bayesian Framework

- We propose a unified Bayesian framework for the architecture search
 - $\pi(\alpha, W, \Gamma) \propto \pi(\alpha, W | \Gamma) \pi(\Gamma)$ $\pi(\alpha, W|\Gamma) \propto e^{-\mathscr{L}(\alpha(\Gamma), W(\Gamma)|\Gamma)}$

$$\pi(\Gamma) \propto \prod_{m=1}^{n_{edge}} \pi(\gamma_m) = \prod_{m=1}^{n_{edge}} e^{-c|\gamma_m|} \mathbb{1}_{\{|\gamma_m|>0\}}(\gamma_m)$$

the space of architectures

• The prior for Γ is set to ensure that it enforces a mode where every edge has one operator ($|\gamma_m| = 1$)

 n_{edge} is the number of edges, and Γ , a binary matrix, is introduced to select from

BPNAS algorithm

• Our goal is to learn – $(\hat{\alpha}^{MAP}, \hat{W}^{MAP}, \hat{\Gamma}^{MAP}) = \arg \max \pi(\alpha, W, \Gamma)$

- continuous random variable
- weight matrix α

α .W. Γ

Difficult to find this MAP estimate from the joint distribution of discrete and

• We devise an algorithm to prune out less important operators based on the

BPNAS algorithm

Bayesian Progressive architecture search (BPNAS):

threshold δ

While $||\gamma_m||_0 > 1$ for some k:

Update W, α by stochastic gradient descent

If
$$\left|\left|\theta(\alpha_m) - \frac{\mathbf{1}_{\left|\left|\gamma_m\right|\right|_0}}{\left|\left|\gamma_m\right|\right|_0}\right|\right|_2 \ge \delta$$
 holds:

Select $(l, m) = argmin_{\{(l', m'): \Gamma_{l'm'}=1\}} \alpha_{l'm'}$ and set $\Gamma_{l'm'} = 0$

Reset α

Output: An architecture Γ with a single operation for each edge.

• We chose $\theta(\alpha_m) \sim Dirichlet(\alpha_m)$

Input: An initial super-network ($\Gamma = 1$) with architecture parameters α , weights W, posterior distribution $\pi(W, \alpha, \Gamma)$, and a

Architecture Ensemble

- Our Bayesian framework enables efficient method to sample architectures from the posterior
- Upon convergence to an architecture $\hat{\Gamma}$, we restart the algorithm N times by randomly sampling an edge s and set $\gamma_s = 1$
- We perform this (in parallel) to build an ensemble of architectures

Results **Architecture search**

Methods	CIFAR-10		CIFAR-100		ImageNet	
	Test	Epochs	Test	Epochs	Test	Epochs
ResNet	93.97	100	70.86	100	43.63	100
DrNAS ³	94.36 ± 0.0	100	71.00 ± 1.3	100	46.34 ± 0.0	100
BPNAS	94.18 ± 0.3	63	73.40 ± 0.2	50	46.34 ± 0.0	26
Optimal	94.37	_	73.51	-	47.31	_

- On CIFAR-10 and ImageNet dataset, BPNAS performs similarly to the state-of-the-art while outperforming on CIFAR-100

• Since BPNAS used pruning it converges to the final architecture faster (~70% less epochs on ImageNet)

Results Architecture Ensemble

Methods	CIFAR-10	CIFAR-100	ImageNet
NES-RS ⁴	94.17 ± 0.3	74.42 ± 0.8	45.66 ± 1.7
NESBS ⁵	94.08 ± 0.1	75.00 ± 0.2	47.32 ± 0.4
BPNAS	95.10 ± 0.3	77.47 ± 1.0	50.27 ± 0.5

 On all datasets, BPNAS ensemble outperfo algorithms

• On all datasets, BPNAS ensemble outperforms all the state-of-the-art architecture ensemble

Thank you!

References

- preprint arXiv:1806.09055.
- 2. Dong, X. and Y. Yang (2020). "Nas-bench-201: Extending the scope of reproducible neural architecture search". In: arXiv preprint arXiv:2001.00326.
- search". In: arXiv preprint arXiv:2006.10355.
- Systems 34, pp. 7898–7911.
- 5. Shu, Y., Y. Chen, Z. Dai, and B. K. H. Low (2022). "Neural ensemble search via Bayesian sampling". In: Uncertainty in Artificial Intelligence. PMLR, pp. 1803–1812.
- pattern recognition, pp. 8697–8710.

1. Liu, H., K. Simonyan, and Y. Yang (2018). "Darts: Differentiable architecture search". In: arXiv

3. Chen, X., R. Wang, M. Cheng, X. Tang, and C.-J. Hsieh (2020). "Drnas: Dirichlet neural architecture

4. Zaidi, S., A. Zela, T. Elsken, C. C. Holmes, F. Hutter, and Y. Teh (2021). "Neural ensemble search for uncertainty estimation and dataset shift". In: Advances in Neural Information Processing

6. Zoph, B., V. Vasudevan, J. Shlens, and Q. V. Le (2018). "Learning transferable architectures for scalable image recognition". In: Proceedings of the IEEE conference on computer vision and

