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Introduction

* Objective of NAS is to automate designing of neural networks

* Traditional NAS methods use evolutionary algorithms and reinforcement
learning (heavy computation burden)

e Differentiable NAS' is an attractive alternative that incorporates
differentiability in the search process hence increase efficiency



Differentiable NAS

g

A cell is a directed acrylic A super-network is assumed

graph consisting NV (=4 here) Where output of each node is
nodes with unknown an weighted average of K
operations (convolution, operations
skip-connect etc.)

An architecture is
The weights are learned selected by choosing the
as a part of the training operators with the

maximum weights

Fig.1: Schematic of differentiable NAS'



Differentiable NAS

* The differentiable NAS objective function:

(a, W)

train

min £ (a, W*) s.t. W* = argmin &
o |14
o, W are the weights of the operators and the weights (and biases) of the

network

* The loss is differentiable w.r.t the parameters and therefore they can be
learned with existing gradient based tools



A Bayesian Framework
 We propose a unified Bayesian framework for the architecture search —
n(a, W,1") «x (o, W|D)a(l)
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Nedge 1S the number of edges, and I, a binary matrix, is introduced to select from
the space of architectures

» The prior for 1l is set to ensure that it enforces a mode where every edge has one
operator (|y,,| = 1)



BPNAS algorithm

. Our goal is to learn— (@MAY, WMAP T"MAPy — arg max n(a, W, 1)
a,W.1

e Difficult to find this MAP estimate from the joint distribution of discrete and
continuous random variable

 We devise an algorithm to prune out less important operators based on the
weight matrix o



BPNAS algorithm

Bayesian Progressive architecture search (BPNAS):

Input: An initial super-network (I' = 1) with architecture parameters a , weights W, posterior distribution z#(W, a,1"), and a
threshold o

While ||y, ||, > 1 for some k:
Update W, a by stochastic gradient descent

Ly
[V |

If ||(a,,) ||, = o holds:

Select (I, m) = argmin ,,r, -1, and setly,, =0

Reset a

Output: An architecture 1" with a single operation for each edge.

» We chose O(a,,) ~ Dirichlet(a,,)



Architecture Ensemble

. . . 3,4,3,1,3,3
* Our Bayesian framework enables efficient ( scc. 94.09)
method to sample architectures from the (1,3,3,1,3,3) (3,3,3,1,3.2)
. acc: 93.91 acc: 94.37
pOSterIOr \ / (oracle)
_ A (3,3,3,1,3,3)
« Upon convergence to an architecture 1, we poc: 94.36
restart the algorithm /V times by randomly / \
sampling an edge s and sety, = 1 (3:3,0,1,3,3) (3:1,3,1,3,3)
acc: 94.24 acc: 93.83
 We perform this (in parallel) to build an ensemble Fig.2: An ensemble in NAS-Bench-2012

of architectures



Results

Architecture search

CIFAR-10 CIFAR-100 ImageNet
Methods
Test Epochs Test Epochs Test Epochs
ResNet 93.97 100 70.86 100 43.63 100

DrNAS3 (94.36 + 0.0 100 71.00+1.3 100 46.34 = 0.0 100

BPNAS |94.18 £ 0.3 63 73.40 = 0.2 50 46.34 = 0.0 26

Optimal 94.37 - 73.51 - 47.31 -

* On CIFAR-10 and ImageNet dataset, BPNAS performs similarly to the state-of-the-art while
outperforming on CIFAR-100

* Since BPNAS used pruning it converges to the final architecture faster (~70% less epochs on ImageNet)



Results

Architecture Ensemble

Methods CIFAR-10 CIFAR-100 ImageNet
NES-RS4 94.17 £ 0.3 74.42 + 0.8 45.66 = 1.7
NESBS> 94.08 = 0.1 75.00 £ 0.2 47.32 =+ 0.4
BPNAS 95.10 = 0.3 7747 £ 1.0 50.27 = 0.5

 On all datasets, BPNAS ensemble outperforms all the state-of-the-art architecture ensemble
algorithms



Thank you!
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