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N⋆(C) ∝ C0.88

N⋆(C) ∝ C0.73

Hoffmann et al.:  (“Chinchilla law”)N⋆(C) ∝ C0.5

Conjectured reason:  LR decay

J. Kaplan et al. 

Scaling laws for neural language models.

arXiv:2001.08361, 2020.

J. Hoffmann et al.

An empirical analysis of compute-optimal large language model training.

In Advances in Neural Information Processing Systems (NeurIPS), 2022



Experimental setup



Experimental setup

• Using the OpenLM library



Experimental setup

• Using the OpenLM library

• 16 model architectures, with 5M-901M parameters



Experimental setup

• Using the OpenLM library

• 16 model architectures, with 5M-901M parameters

• Two open datasets:



Experimental setup

• Using the OpenLM library

• 16 model architectures, with 5M-901M parameters

• Two open datasets:

• OpenWebText2 — ~30B tokens, resembles Kaplan et al. dataset



Experimental setup

• Using the OpenLM library

• 16 model architectures, with 5M-901M parameters

• Two open datasets:

• OpenWebText2 — ~30B tokens, resembles Kaplan et al. dataset

• RefinedWeb— ~600B tokens from CommonCrawl, resembles half of the 
data mix in Hoffmann et al.
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Optimizer tuning

• We sweep LR and BS on 7 models (5M to 220M) with 7 values for LR and 7 values for BS

• Inspired by DeepSeek, we fit a scaling law for BS and LR

• It is crucial to choose higher values  in AdamW for small BSβ2

DeepSeek.

Deepseek LLM: Scaling open-source language models with longtermism.

arXiv:2401.02954, 2024.
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Code, data and checkpoints 
 available online

Thank you!
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