SCALIFY: scale propagation for efficient low-precision LLM training

Paul Balanca, Sam Hosegood, Carlo Luschi, Andrew Fitzgibbon

GRAPHCORE

Contributions

Scalify formalizes tensor scaling for low-precision training and

inference.

* End-to-end scale propagation: model forward & backward
passes and optimizer update.

* FP8 asjust another datatype: t.astype(jnp.float8 e4m3)

* Robust scaled FP16 master weights and optimizer state.

* Minimized dynamic rescaling for FP8 training.

* Modelinvariance: full computation graph transformation.

@dataclass
class ScaledArray:
"""Scaled array generic representation.
data:
scale:

Scale propagation

InScalify everytensor
IS a ScaledArray S.t.

Main data tensor.
Scale tensor

data:
scale:

X =Xy Xg

Array
Array

End-to-end scale propagation requires JAX LAX (or Pytorch Alen)
primitives scaled implementation, i.e. for each:

(}Ea-"}}?n)::,f()(la-"a)cn)

an equivalent scaled operation:

(Yl,dp Yl,sa JRILN Ym,da Ym,s) — fscaled(Xl,d: Xl,sa R

; Xn,dp Xn,s)

Scaled primitives are implemented following unit-scaling rules,
i.e. assuming inputs E[X? | ~ 1 then outputs E[Y?,] ~ 1.

Why unit-scaling assumption? E[X}] ~1
* Maintains high SNR for low-precision formats FP8 & FP16.
* Canrepresentlarge outliers.

Usually scalar and power-of-two.

Experiments

Training 168M GPT-2 model on WikiText-103 showing:

* Qut-the-box replacement of FP16 loss scaling.

* FP8forward & backward matmuls with E4AM3 and E5M2.

* Scaled FP16 master weights (instead of FP32).

* Scaled FP16 optimizer state (with additional weight gradients
rescaling).

* Reduced dynamic rescaling to LayerNorm gradients.

5.5

_ e —— Baseline FP32
| 3.00 -==- Scalify FP16 #1
5.0 - y@ Y I T P Scalify FP16 #2
2.95 T pdys i" _ ,, Afue - Scalify FP8 #3
2.90 'r ﬂ' v —-— Scalify FP8 #4
4.5 |

Training loss
B
o

How to Scalify a training loop?

Seamless integration with JAX & ecosystem (Flax, Optax, ...) as a
white box explicit approach to tensor scaling.

Using Scalify in practice:

* Model and optimizer states as ScaledArray.

 Scalify computational graph: forward + backward + optimizer
update.

 (Optional) dynamic rescaling of gradients, states, ...

import Jjax_scaled arithmetics as jsa

Scalify transform on FWD + BWD + optimizer.
Propagating scale in the computational graph.
@jsa.scalify
def update(state, data, labels):
Forward and backward pass on the NN model.
grads = jax.grad (model) (state, data, labels)
Optimizer applied on scaled state.
grads)

loss,

state = optimizer.apply(state,
return loss, state

Model + optimizer state.

state = (model.init(...), optimizer.init(...))
Transform state to scaled array(s)

sc.state = jsa.as._scaled.array (state)

labels) in dataset:
images), scale 1input data.

for (data,
If necessary (e.g.

data = jsa.as_scaled.array (data)

State update, with full scale propagation.

sc_state = update(sc_state, data, labels)

Optional dynamic rescaling of state.

sc_state = jsa.dynamic_rescale(sc_state)

General linear layer

General linear layer supporting FP8 E4M3 in forward and E5M2 in
backward passes.

def general linear layer (
Array, bias: Array, =x*,
DType, bwd_dtype: DType):
No—-op on gradient.
fwd_dtype)
fwd_dtype)

with
potentially different output dtype.
jnp.dot (x, w)
Backward casting.
cast_on_backward (out, bwd_dtype)
Adding bias, using output precision.
out = out + bias

return out

X: Array, w:
fwd_dtype:
Forward casting.
= cast_on_forward (w,
cast_on_forward(x,
Matrix multiplication,

=
W
% =
=
-
out =

No—-op on activation.
out =

Activation layers f(X)=X-g(X)

Custom identity scale propagation based on of the common
gating decomposition of activation functions.

fscaled(Xd, Xs) = (Xq - 9(Xq - Xs), Xs)

Normalization layers

3.5 Implicitly resetting tensor scale to 1 (before affine correction).
X-EX] = Xq-E[X{]
30 v/ Var[X]|+e¢ /Var[X,] + X
2.5 X4 E[X{]
0 2500 5000 7500 10000 12500 15000 17500 20000 \/Val‘[Xd] + €
Training steps
EXPERIMENT MATMUL MASTER STATE OPTIMIZER DYNAMIC TRAINING E
(GEMM) STATE GRADS. STATE RESCALING LOSS —
FP32 baseline #0 FP32 FP32 FP32 FP32 X 2.874+0.12
SCALIFY FP16 #1 FP16 FP32 FP16 FP32 X 2.874+0.12 "
SCALIFY FP16 #2 FP16 FP16 FP16 FP32 LayerNormbwd 2.92+0.12
SCALIFY FP8 #3 FP8 FP16 FP8 FP32 LayerNormbwd 2.92+0.12 o
SCALIFY FP8 #4 FP8 FP16 FP8 FP16 LayerNormbwd & grads 2.93 +£0.12 Read the paper Try JAX Scalify

	Slide 1

