SCALIFY: scale propagation for efficient low-precision LLM training

Paul Balança, Sam Hosegood, Carlo Luschi, Andrew Fitzgibbon

Contributions

Scalify formalizes tensor scaling for low-precision training and inference.

- End-to-end scale propagation: model forward & backward passes and optimizer update.
- **FP8** as just another datatype: t.astype(jnp.float8_e4m3)
- Robust **scaled FP16** master weights and optimizer state.
- Minimized **dynamic rescaling** for FP8 training.
- Model invariance: full computation graph transformation.

Scale propagation	oropagation @dataclass class ScaledArray:					
	"""Scaled array generic representation.					
In Scalify every tensor	data: Main data tensor.					
is a ScaledArray s.t.	scale: Scale tensor					
	Usually scalar and power-of-two					
$X = X_d \cdot X_s$						
	data: Array scale: Array					

End-to-end scale propagation requires JAX LAX (or Pytorch ATen)

How to Scalify a training loop?

Seamless integration with JAX & ecosystem (Flax, Optax, ...) as a white box explicit approach to tensor scaling.

GRAPHCORE

Using Scalify in practice:

- Model and optimizer states as ScaledArray.
- Scalify computational graph: forward + backward + optimizer update.
- (Optional) dynamic rescaling of gradients, states, ...

import jax_scaled_arithmetics as jsa
Scalify transform on FWD + BWD + optimizer.
Propagating scale in the computational graph.
@jsa.scalify
def update(state, data, labels):
 # Forward and backward pass on the NN model.
 loss, grads = jax.grad(model)(state, data, labels)
 # Optimizer applied on scaled state.
 state = optimizer.apply(state, grads)
 return loss, state

Model + optimizer state.

primitives scaled implementation, i.e. for each:

 $(Y_1,\ldots,Y_m)=f(X_1,\ldots,X_n)$

an equivalent scaled operation:

 $(Y_{1,d}, Y_{1,s}, \dots, Y_{m,d}, Y_{m,s}) = f_{\text{scaled}}(X_{1,d}, X_{1,s}, \dots, X_{n,d}, X_{n,s})$

Scaled primitives are implemented following unit-scaling rules, i.e. assuming inputs $\mathbf{E}[X_{i,d}^2] \simeq 1$ then outputs $\mathbf{E}[Y_{j,d}^2] \simeq 1$.

Why *unit-scaling* assumption? $\mathbf{E}[X_{i,d}^2] \simeq 1$

- Maintains high SNR for low-precision formats FP8 & FP16.
- Can represent large outliers.

Experiments

Training 168M GPT-2 model on WikiText-103 showing:

- Out-the-box replacement of FP16 loss scaling.
- FP8 forward & backward matmuls with E4M3 and E5M2.
- Scaled FP16 master weights (instead of FP32).
- Scaled FP16 optimizer state (with additional weight gradients rescaling).
- Reduced dynamic rescaling to LayerNorm gradients.

state = (model.init(...), optimizer.init(...))
Transform state to scaled array(s)
sc_state = jsa.as_scaled_array(state)

for (data, labels) in dataset:

If necessary (e.g. images), scale input data. data = jsa.as_scaled_array(data) # State update, with full scale propagation. sc_state = update(sc_state, data, labels) # Optional dynamic rescaling of state. sc_state = jsa.dynamic_rescale(sc_state)

General linear layer

General linear layer supporting FP8 E4M3 in forward and E5M2 in backward passes.

def general_linear_layer(

x: Array, w: Array, bias: Array, *, fwd_dtype: DType, bwd_dtype: DType): # Forward casting. No-op on gradient. w = cast_on_forward(w, fwd_dtype) x = cast_on_forward(x, fwd_dtype) # Matrix multiplication, with # potentially different output dtype. out = jnp.dot(x, w) # Backward casting. No-op on activation. out = cast_on_backward(out, bwd_dtype) # Adding bias, using output precision. out = out + bias return out

Activation layers

 $f(X) = X \cdot g(X)$

Custom identity scale propagation based on of the common gating decomposition of activation functions.

 $f_{\text{scaled}}(X_d, X_s) = (X_d \cdot g(X_d \cdot X_s), X_s)$

Normalization layers

Implicitly resetting tensor scale to 1 (before affine correction).

$$\frac{X - \mathbf{E}[X]}{\sqrt{\mathbf{Var}[X]} + \varepsilon} = \frac{X_d - \mathbf{E}[X_d]}{\sqrt{\mathbf{Var}[X_d]} + \frac{\varepsilon}{X_s}}$$
$$\simeq \frac{X_d - \mathbf{E}[X_d]}{\sqrt{\mathbf{Var}[X_d]} + \varepsilon}.$$

Experiment	Matmul	Master	STATE	Optimizer	DYNAMIC	TRAINING
	(GEMM)	state	GRADS.	state	RESCALING	LOSS
FP32 baseline #0	FP32	FP32	FP32	FP32	x	$\begin{array}{c} 2.87 \pm 0.12 \\ 2.87 \pm 0.12 \\ 2.92 \pm 0.12 \\ 2.92 \pm 0.12 \\ 2.93 \pm 0.12 \end{array}$
SCALIFY FP16 #1	FP16	FP32	FP16	FP32	x	
SCALIFY FP16 #2	FP16	FP16	FP16	FP32	LayerNorm bwd	
SCALIFY FP8 #3	FP8	FP16	FP8	FP32	LayerNorm bwd	
SCALIFY FP8 #4	FP8	FP16	FP8	FP16	LayerNorm bwd & grads	

