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Overview

Goal: Adaptive optimization has been shown to accelerate convergence,

and be critical to training transformer-based models such as LLMs. How-

ever, adaptivity imposes additional constraints on client memory and com-

munication during distributed optimization. Can we develop a strategy to

overcome these bottlenecks in federated learning (FL)?

Contributions:

X Develop a class of efficient jointly adaptive distributed training

algorithms (FedAda2) to mitigate the restrictions above while retaining

full benefits of adaptivity

X Ensure that FedAda2-class algorithms maintains an identical

communication complexity as the vanilla FedAvg algorithm

X Provide robust convergence guarantees for the general, non-convex

setting, achieving the same best known convergence rate as prior

federated adaptive optimizers

Why is Joint Adaptivity Desirable?

Empirical Perspective: Improves convergence and final accuracies (e.g.,

Wang et al, 2021; Lee et al, 2024)

Theoretical Perspective: Construction of an artificial problem involving

heavy-tailed noise in which adaptivity is paramount

Theorem 1 (Informal)

For µ-strongly convex online global objectives, FedAvg incurs infinite re-
gret in expectationwhen client stochastic gradient distribution is heavy-

tailed (defined as E[X2] =∞).

Corollary 1: Introducing client side or joint adaptivity via AdaGrad for

the setting in Theorem 1 mitigates suffering infinite regret at every step!
Corollary 2: Even a single client with heavy-tailed gradient noise is able

to instantaneously propagate their volatility to the global model, which

severely destabilizes distributed learning in expectation.

Moral of story: Advantage of FL is large supply of clients, which enable the

trainer to draw from an abundant stream of computational power. Down-

side is that global model may become strongly impacted by the various

gradient distributions induced by local data shards, which must be dealt

with carefully (e.g. using jointly adaptive optimizers to mitigate regret).

FedAda2: Efficient Joint Adaptivity

FedAda2: Efficient Adaptive Federated Optimization

1: for t = 1, . . . , T do

2: Sample participating clients St ⊂ [N ]
3: for each client i ∈ St (in parallel) do

(Main Idea 1:) Zero Preconditioner Initialization

4: for k = 1, . . . , K do

5: Draw gti,k ∼ D(xti,k−1), let mk ←MOM(gti,k)

(Main Idea 2:) Any Efficient Optimizer

6: end for

7: ∆t
i = xti,K − xt−1

8: end for

9: Server Update

10: end for

SM3-ADAGRAD VARIANT:

mk ← gti,k, µk(b)← 0 for ∀b ∈ {1, . . . , q},

Loop j :

{
vk(j)← min

b:Sb3j
µk−1(b) +

(
gti,k(j)

)2

µk(b)← max{µk(b), vk(j)}, ∀b : Sb 3 j

Non-convex Convergence Analysis

Theorem 2

Under some assumptions, FedAda2 deterministically satisfies

min
t∈[T ]

‖∇f (xt−1)‖2 ≤
Ψ1 + Ψ2 + Ψ3 + Ψ4 + Ψ5

Ψ6

where asymptotically,

ψ1 = Θ(1), ψ2 = η2η2
`T, ψ3 = ηη2

`T, ψ4 = ηη` log(1 + Tη2
`)

and

ψ5 =
{
η3η3

`T if O(η`) ≤ O(1)
η3η`T if Θ(η`) > Ω(1)

, ψ6 =
{
ηη`T if O(Tη2

`) ≤ O(1)
η
√
T if Θ(Tη2

`) > Ω(1)
.

Theorem 3 (Generalization)

Given client i ∈ [N ], strategy l ∈ [Op], global timestep r, and local

timestep p, assume optimizer strategies satisfy update rule

x
r,l
i,p = x

r,l
i,p−1 − η`

p∑
`=1

a
r,l
i,`
g
r,l
i,`

ϑ
r,l
i,`

(gr,li,1, . . . , g
r,l
i,`

)

where

0 < ml ≤ ϑ
r,l
i,`

(gr,li,1, . . . , g
r,l
i,`

) ≤Ml and 0 < al ≤ a
r,l
i,`
≤ Al

for all possible values of i, `, r, l. If 1 ≤ K(Oil) ≤ K and 0 < Ξ− <

w(Oil) < Ξ+, then the bound in Theorem 2 holds.

Experiments (e.g. GLD-23K)

Naive Joint Adaptivity> FedAvg, FedAdam
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Naive Joint Adaptivity≈Adaptivityw/o Preconditioner Transmission
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FedAda2 (Efficient) ≈ Naive Joint Adaptivity (Costly)
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FutureWork

1. Generalize full gradient convergence results to stochastic gradients

2. Elucidate the link between attention mechanisms and heavy-tailed

gradient noise, and propose additional optimizers

3. Explore empirical performance of blended optimization, identifying

settings in which mixing optimizer strategies (e.g. using client side SGD

& Adam in the same round) are advantageous for distributed learning
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