Lowering PyTorch's Memory Consumption for Selective Differentiation

\

We identify that some PyTorch layers save unnecessary tensors when parameters have
O Et R AP and provide a fix to reduce memory without affecting runtime.

VECTOR

Samarth Bhatia, Felix Dangel INSTITUTE

Indian Institute of Technology Delhi

This is useful for fine-tuning setups that only compute gradients for a sub-set of parameters.

PyTorch sometimes retains tensors which are not required for backpropagation

Toy example: Let's look at a CNN without pooling/activations.

We feed a mini-batch which consumes 512 MiB memory. Each
intermediate tensor requires 512 MiB memory. Here is the

forward pass’s memory consumption when different parame-

ters are trainable (approximates computation graph size).

==@==Fully differentiable
==3¢=Fully non-differentiable
=== Layers 4+ differentiable
=P= Layer 4 differentiable

= O Layer 4 differentiable (ours)

at
o
o
o

=
=
o
—
o
=
Q
=
-
S
)
al

Number of layers

Conclusion: PyTorch's convolution stores the layer input if it

s differentiable, irrespective of the weight's differentiability.

But we don't need the input if the weight is non-differentiable!

Confirmation via torchviz :

weight.requires_grad = False

X.requires_grad = True
: [saved tensor]

SumBackward0 input

self sym sizes: (7, 5, 10, 10) (7, 3, 12, 12)

AccumulateGrad

Summary:

W

X —> L7 VA

C] . Stored by AD

: Non-/Differentiable,

Fix: We provide a drop-in implementation which stores only the required tensors

Affected layers:

» Convolutions (nn.ConvNd)

» Batch norm in eval mode (nn.BatchNormNd)
» Transpose convolution (nn.ConvTransposeNd)
Interestingly, nn.Linear s optimized already!

Other memory optimizations:

 nn.RelU : Store boolean mask instead of float-
ing point tensor (4x reduction, soon 32x when
torch.bit is implemented)

» nn.Dropout : Only save random number genera-
tor state and re-compute dropout mask

Evaluation: Selective Differentiation in Practice

We evaluate on practical scenarios:

«‘All'": Training the full net (baseline)
*‘Input’. Only input differentiable
(style transfer, adversarial data)

*'Norm’: Only normalization layers
trainable (layer-norm fine-tuning)

-‘Surgical: Only trainable sub-
network (surgical fine-tuning)

Input

$ pip install memsave

$ model = memsave.convert(model)

ResNet-101

DO [\ w
[a] ot (a]

Peak memory [GiB]
—_
ot

Input (BN Eval)

