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Language Adaptation on a Tight Academic Compute Budget

Tight Academic Compute
Budgets

Since GPUs are a shared resource, any individual
often can only access:

o Limited number of GPUs (such as only two or four)

o Limited GPU memory (such as 40GB vs. 80GB
Nvidia A100)

o For a limited time (long runs only on weekends /
holidays)

Approach

We focus in two approaches to increase efficiency
of language adaptation on a tight compute budget:

o Pure bfloatl6 instead of mixed precision: mixed
precision requires float32 optimizer states and a
model copy > we need to use expensive
memory-saving techniques like paged
optimizers or gradient checkpointing

o Tokenizer swapping: a specialized tokenizer has
better fertility, allowing us to train on more words
(although not tokens) for the same compute

Experimental Setup

We adapt Mistral-7B-v0.1 [Jiang et al., 2023]
to German and Arabic. We start from the
LeolLM [PlUster et al., 2023] recipe but
modify it for a tight compute budget: only 8
billion training tokens, smaller batch size, 4k
sequence length, 4e-5 learning rate.

Main experiments: Adapt to German with data from
OSCAR23.01 [Abadji et al., 2022]. We run cartesian product
of {pure bfloat16, mixed precision} X {original tokenizer,
tokenizer swapping}.

Hindsight runs: German and Arabic from CulturaX [Nguyen
et al., 2024]. Only tokenizer swapping and pure bfloatlé.
Ablation: use mixed precision just for final Ir annealing.
Prevent cross-document attention.

Key Findings

Pure bfloatl6 performs as well as mixed precision!

Pure bfloatl16 matches mixed precision closely in terms of

Pure bfloatl6 is very useful
in tight budget settings!

loss and actually outperforms on benchmarks. At the very end
of training, we see that pure bfloatl6 loss does not improve. This

iIs due to bfloatl6 numerics — we run an ablation that used mixed
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precision instead at the end but do not see conclusive benefits.

Tokenizer swapping works but doesn't improve results.

Tokenizer swapping matches performance of original vocabulary
but does not result in better performance despite training on more

total words (due to tokenizer fertility) for the same compute.

Numerics of pure bfloatlé6

Weight updates for RMSNorm
parameters are flushed to zero.

Language adaptation is not always helpful.
Intuitively, ,focusing”™ model capacity just on the target language might

be beneficial. However for German, all our adapted models
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underperform base Mistral-7B (our Arabic models outperform!).
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Table 3: Word-normalized negative log-likelihood (NLL)
of a held-out test set throughout continued pretraining of

Table 7: Results on Arabic downstream task suites. The av-
erage 1s a macro-average that includes the individual bench-
marks in AlGhafa-T. T: For pure++ bfloat16, mixed pre-
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Table 5: Effectiveness of models based on Mistral-7B on German downstream tasks. The best result in each section is
bolded and the overall best result of the main experiments is additionally underlined. ': for pure++ bfloat16, mixed
precision was used just for the final annealing phase of the learning rate schedule.




