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Introduction Communication overhead

Introduction

Federated learning

@ Communication cost:
Exchanging models is costly,
especially for large models in
today's machine learning
applications like LLMs.
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Introduction Communication overhead

Introduction
Federated learning Focalseb
Device 2 Device 1
e Communication cost: e 5;
Exchanging models is costly, 5; 5;
especially for large models in e (==
today’s machine learning E‘N@’s‘

applications like LLMs.
@ Possible solutions:
o Local SGD

Mini-batch SGD

A Device 2 Device 1

e Mini-batch SGD — —
& ® gy
E ® S

o W

Figure: From Lin, Tao, Sebastian U. Stich and Martin
Jaggi. “Don't Use Large Mini-Batches, Use Local SGD."”
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Federated learning

Purpose of communication:
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Introduction Communication overhead

Federated learning

Purpose of communication:
@ Reducing the consensus distance among clients.

o Consensus distance at t: & >3, |6 — O4.¢||?, where
0 =% > i1 Ok
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Introduction Communication overhead

Federated learning

Purpose of communication:
@ Reducing the consensus distance among clients.
o Consensus distance at t: 7% Zle 16; — 05|, where
f: = % Zszl O t-
@ Helps maintain the overall optimization process on a trajectory toward
the global optimum.
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Introduction Communication overhead

Consensus distance

Example:
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Model layer

Figure: ResNet-20 on CIFAR-10 with 5 clients with non-iid data distribution over
clients (2 classes per client). The early layers responsible for extracting
representations exhibit lower levels of consensus distance.
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Introduction Representation learning

Representation learning

Convolution Pooling Fully Fully Output Predictions
+ RelU Connected Connected

7 Dog (0)
Cat (0)
X Boat (1)
Bird (0)
()

Erotat = 3 (target — output)?

Learning the representation Learning classification

Feature extraction Fully connected
“Backbone” (transferable) Head
Higer Complexity Lower Complexity

man Gholami, Hulya Seferoglu (UIC) FedALS July 2024 6/24



Introduction Motivation

Motivation

@ The above example indicates that initial layers show higher similarity,
so they can be aggregated less frequently.

!Sashank J. Reddi et al. “Adaptive Federated Optimization”. In: International
Conference on Learning Representations. 2021. URL:
https://openreview.net/forum?id=LkFG31B13U5; Tao Yu, Eugene Bagdasaryan, and
Vitaly Shmatikov. “Salvaging Federated Learning by Local Adaptation”. In: ArXiv

abs/2002.04758 (2020). URL:
https://api.semanticscholar.org/CorpusID:211082604.
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Introduction Motivation

Motivation

@ The above example indicates that initial layers show higher similarity,
so they can be aggregated less frequently.

e several empirical studies! show that federated learning with multiple
local updates per round learns a generalizable representation and is
unexpectedly successful in non-iid federated learning.
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Introduction Motivation

Motivation

@ The above example indicates that initial layers show higher similarity,
so they can be aggregated less frequently.

e several empirical studies! show that federated learning with multiple
local updates per round learns a generalizable representation and is
unexpectedly successful in non-iid federated learning.

Motivate us to investigate how local updates affect the
generalization of the model.

!Sashank J. Reddi et al. “Adaptive Federated Optimization”. In: International
Conference on Learning Representations. 2021. URL:
https://openreview.net/forum?id=LkFG31B13U5; Tao Yu, Eugene Bagdasaryan, and
Vitaly Shmatikov. “Salvaging Federated Learning by Local Adaptation”. In: ArXiv
abs/2002.04758 (2020). URL:
https://api.semanticscholar.org/CorpusID:211082604.
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Problem Statement

Q@ K clients/nodes.
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Problem Statement

Q@ K clients/nodes.

@ Client k has a local dataset Sy = {zx 1, ..., Zk n, }, Where
Zyi = (Xk,i» ¥k,;) is drawn from a distribution Dy over X' x ).
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Problem Statement

Q@ K clients/nodes.

@ Client k has a local dataset Sy = {zx 1, ..., Zk n, }, Where
zyi = (Xk,i, Yk,;) is drawn from a distribution Dy over X x ).

© Dataset across all nodes is defined as § = {S1, ..., Sk}

Q@ Mg = A(S) is the output of a possibly stochastic function denoted as
A(S), where Mg : X — ) is the learned model parameterized by 6.
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Problem Statement Notation

Problem Statement

Q@ K clients/nodes.

@ Client k has a local dataset Sy = {zx 1, ..., Zk n, }, Where
zyi = (Xk,i, Yk,;) is drawn from a distribution Dy over X x ).

© Dataset across all nodes is defined as § = {S1, ..., Sk}

Q@ Mg = A(S) is the output of a possibly stochastic function denoted as
A(S), where Mg : X — ) is the learned model parameterized by 6.

© Empirical risk on dataset S:
Rs(Mg)=Ex~xRs,(Mo)=Ex~r - 1% I(Ma, 2k,7)
@ Population risk: R(Mg) = Exx Rk(Mg) = EkNIC,ZNDk /(Mg,z)
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Problem Statement Notation

Problem Statement

o
2]

K clients/nodes.

Client k has a local dataset Sy = {zx 1, ..., Zk,n, }, Where
zyi = (Xk,i, Yk,;) is drawn from a distribution Dy over X x ).
Dataset across all nodes is defined as § = {81, ..., Sk}

Mg = A(S) is the output of a possibly stochastic function denoted as
A(S), where Mg : X — ) is the learned model parameterized by 6.

Empirical risk on dataset S:
Rs(Mg)=Ex~xRs,(Mo)=Ex~r - 1% I(Ma, 2k,7)
Population risk: R(Mg) Exox Rk(/\/lg) = EkNIC,ZNDk /(Mg, Z)
Generalization error for dataset S and function A(S):

Au(S) = R(A(S)) — Rs(A(S))
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Problem Statement Notation

Problem Statement

o
2]

K clients/nodes.

Client k has a local dataset Sy = {zx 1, ..., Zk,n, }, Where
zyi = (Xk,i, Yk,;) is drawn from a distribution Dy over X x ).

Dataset across all nodes is defined as § = {81, ..., Sk}

Mg = A(S) is the output of a possibly stochastic function denoted as
A(S), where Mg : X — ) is the learned model parameterized by 6.

Empirical risk on dataset S:

Rs(Mg)=Ex~xRs,(Ms)= EkNK,,kZ"k I(Me, z ;)
Population risk: R(Mg) Exox Rk(/\/lg) = EkNIC,ZNDk /(Mg, Z)
Generalization error for dataset S and function A(S):

Au(S) = R(A(S)) — Rs(A(S))

Expected generalization: Es A 4(S) = E{SkNDZk}le A4(S)

Peyman Gholami, Hulya Seferoglu (UIC) FedALS July 2024 8/24



Improved Generalization Bounds MO NZN

One-Round Generalization Bound
Theorem

Let I(Mg, z) be p-strongly convex and L-smooth in Mg, Mg, = Ak(Sk)
represents the model obtained from Empirical Risk Minimization (ERM)

algorithm on local dataset Sy, i.e., Mg, = arg miny, 2721 I(M, zy i), and

My = A(S) is the model after one round of FedAvg (0 =Eyxc 0x).

Then, the expected generalization error is

EsA(S) < Exx [L’C"‘)z

Es, A4, (Sk) (1)
H ———

Expected local generalization

+2\/Elc(k)( Es 6x.4(S) Esi 8alSk) )1

Expected non-iidness Expected local generalization

where 0, 4(S) = Rs,(A(S)) — Rs, (Ax(Sk)) indicates the level of
non-iidness at client k for function A on dataset S.
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Improved Generalization Bounds MO NZN

One-Round Generalization Bound

LKC(k)?
EsA4(S) < Exx [() Es, Aa,(Sk)
~—_———
Expected local generalization
1
L 2
ro ik Bsouas)  Esaasy )|
1% N — N—————

Expected non-iidness Expected local generalization

e iid: IC(k)? (enhancement compared to the state of the art?)

2| eighton Pate Barnes, Alex Dytso, and H. Vincent Poor. “Improved
Information-Theoretic Generalization Bounds for Distributed, Federated, and lterative
Learning”. In: Entropy 24 (2022). URL:
https://api.semanticscholar.org/CorpusID:246634528.
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Expected local generalization
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1% N — N—————

Expected non-iidness Expected local generalization

e iid: IC(k)? (enhancement compared to the state of the art?)

@ noniid: the expected generalization error bound does not necessarily
decrease with averaging.
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One-Round Generalization Bound

LKC(k)?
EsA4(S) < Exx [() Es, Aa,(Sk)
~—_———
Expected local generalization
1
L 2
ro ik Bsouas)  Esaasy )|
1% N — N—————

Expected non-iidness Expected local generalization

e iid: IC(k)? (enhancement compared to the state of the art?)

@ noniid: the expected generalization error bound does not necessarily
decrease with averaging.

FedAvg works well in iid setup.

2| eighton Pate Barnes, Alex Dytso, and H. Vincent Poor. “Improved
Information-Theoretic Generalization Bounds for Distributed, Federated, and lterative
Learning”. In: Entropy 24 (2022). URL:
https://api.semanticscholar.org/CorpusID:246634528.
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Improved Generalization Bounds MO NZN

One-Round Generalization Bound

EsA4(S) < Exx Es, A4, (Sk)
—

Expected local generalization

gl

1

+2\/E/c(k)( Es 0.4(S) Es AalSK) )2}

Expected non-iidness Expected local generalization

Partial client participation:
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Improved Generalization Bounds MO NZN

One-Round Generalization Bound

LK (k)2

EsA4(S) < Exx [ Es, A4, (Sk)
—_—

Expected local generalization
1

+2\/E/c(k)( Es 0.4(S) Es AalSK) )2}

Expected non-iidness Expected local generalization

Partial client participation:
Case I: Sampling K clients with replacement based on distribution IC,

followed by averaging the local models with equal weights. (KC(k) — %)

Peyman Gholami, Hulya Seferoglu (UIC) FedALS July 2024 11/24



Improved Generalization Bounds MO NZN

One-Round Generalization Bound

LK (k)2

EsA4(S) < Exx [ Es, A4, (Sk)
—_—

Expected local generalization
1

+2\/E/c(k)( Es 0.4(S) Es AalSK) )1

Expected non-iidness Expected local generalization

Partial client participation:
Case I: Sampling K clients with replacement based on distribution IC,

followed by averaging the local models with equal weights. (KC(k) — %)

Case II: Sampling K clients without replacement uniformly at random,
then performing weighted averaging of local models. Here, the weight of

client k is rescaled to % (K(k) — %)
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Improved Generalization Bounds R—Round FL

R—Round Generalization Bound

° Zy,= U{Bk,,’t}I;ol, where By , ; is the batch of samples used in

local step t of round r in node k. 7 is the duration of one reound.
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Improved Generalization Bounds R—Round FL

R—Round Generalization Bound

° Zy,= U{Bk,,’t}I;ol, where By , ; is the batch of samples used in
local step t of round r in node k. 7 is the duration of one reound.

.. o1 R 1 .
o Empirical risk: &> /"1 Exx mZiEZm /(M@r72k,:)
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Improved Generalization Bounds R—Round FL

R—Round Generalization Bound

° Zy,= U{Bk,,’t}I;ol, where By , ; is the batch of samples used in
local step t of round r in node k. 7 is the duration of one reound.

.. o1 R 1 . )
o Empirical risk: &> /"1 Exx [mr Ziezk,, /(I\/Ier,zk’,)}
@ Generalization error:

Areang(8) =T Brck | Ban (M, 21 2 Sicz, /(M 201)
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Improved Generalization Bounds R—Round FL

R—Round Generalization Bound

° Zy,= U{Bk,,’t}I;&, where By , ; is the batch of samples used in
local step t of round r in node k. 7 is the duration of one reound.

o Empirical risk: £ S°F By ok [|z}l Yiez., /(Mér,zk,,-)}
@ Generalization error:
R
Areang(8) =T Brck | Ban (M, 21 2 Sicz, /(M 201)

@ Bounded gradient variance:
ﬁ Ziezk,, IVI(M, zyj) — ﬁ Ziezk,, VI(M, Zk,i)”2 <o’
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Improved Generalization Bounds R—Round FL

R—Round Generalization Bound

Theorem

Let I(Mg, z) be p-strongly convex and L-smooth in Mg. Local models at
round r are calculated by doing T local steps and the gradient variance is
bounded by o%. The aggregated model at round r is Mg is obtained by
performing FedAvg and where the data points used in round r(ie., Zx,)
are sampled without replacement. Then the average generalization error
bound is

R 2LKC(k) 8L 1
Z_: [MA+ ;K(k)(AB) } (2)

where A = O< |(Zk |)—|—+>

B = O<E{Zk,r}kK_1 S A({Zi MK )) + Zé + ;5> and C(Mg) shows the

complexity of the model class of My.
Peyman Gholami, Hulya Seferoglu (UIC) FedALS July 2024 13 /24




Improved Generalization Bounds R—Round FL

R-Round Generalization Bound

Nl=

R
1 2LK (k)2 8L
Es Areanvs(S)< 5 D Bik [AE)A £/ KR AB) ]
r=1

«( |C(Mg) | o° L> ~< K o2 L>
A=0 +—+—1],B=0(Eo Z Ky Tyt
< |Zk,|  pr o p kA Zk,r tie=1) e

Representation learning Interpretation:
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Improved Generalization Bounds R—Round FL

R-Round Generalization Bound

Nl=

[2L’C(k)2A—I— iLIC(k)(AB) ]

R
1
Es Areanvg(S)< > Erek
r=1

«( |C(Mg) | o° L> ~< K o2 L>
A=0 +—+—1],B=0(Eo Z Ky Tyt
< |Zk,|  pr o p kA Zk,r tie=1) e

Representation learning Interpretation:
Mo (x) = (Mg o Mp)(x) = Ma(Mg(x)), C(Mp) < C(Mg)
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Improved Generalization Bounds R—Round FL

R-Round Generalization Bound

R
1 2LK (k)2 8L
Es Areanvs(S)< 5 D Bik [()A + 1/ —K(k)(AB)
r=1

Nl=

s ]

«( |C(Mg) | o° L> ~< K o2 L>
A=0 +—+—1],B=0(Eo Z Ky Tyt
< |Zk,|  pr o p kA Zk,r tie=1) e

Representation learning Interpretation:
Mo (x) = (Mg o Mp)(x) = Ma(Mg(x)), C(Mp) < C(Mg)

Our key intuition in this paper is that we can reduce the aggrega-
tion frequency of My, which leads to a larger 7 and |Zy ,|, hence
smaller generalization error bound.
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Improved Generalization Bounds R—Round FL

R-Round Generalization Bound

2LKC(k)? 8L
P A+ MIC(k)(AB)]

Nl=

R
1
Es Areanvg(S)< > Erek [
r=1

«( |C(Mg) | o° L> ~< K o2 L>
A=0 +—+—1],B=0(Eo Z Ky Tyt
< |Zk,|  pr o p kA Zk,r tie=1) e

Representation learning Interpretation:
Mo (x) = (Mg o Mp)(x) = Ma(Mg(x)), C(Mp) < C(Mg)

Our key intuition in this paper is that we can reduce the aggrega-
tion frequency of My, which leads to a larger T and |Zj ,
smaller generalization error bound.

, hence

Aggregation frequency of My cannot be reduced arbitrarily, as it would

2
increase the empirical risk. (convergence rate: O (% + (%) 3+ #)
,T=7R)
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FedALS

FedALS: Federated Learning with Adaptive Local Steps

@ Main idea: to maintain a Algorithm 1 FedALS
uniform generalization error Input: Initial model {8x,1,0 = [y 1 0, Bk 1,0]} <, Learn-
ing rate 7, number of local steps for the head model 7,
across both com ponents (M¢ adaptation coefficient ov.
and Mh) 1: forRoundrin. 1,...,Rd(?
2:  for Node k in 1,..., K in parallel do
3 for Local step t in 0, ...,7 — 1 do
4: Sample the batch By . ; from Dy.
5 Okret1 = Okrt — (B DicBi..
VIi(M,.,.,,2k,i)
6: if mod (r7 +t,7) = 0 then
7: e S R
8: elseif mod (r7 +t,ar) = 0 then
9: Prrt < % PO Dr,rt
10: Okr10=0krr

11: return O, = & zf;lo,c,n,
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FedALS: Federated Learning with Adaptive Local Steps

@ Main idea: to maintain a Algorithm 1 FedALS
uniform generalization error Input: Initial model {6%,1.0 = [#,1,0, Bk, 1,01}, Learn-
ing rate 7, number of local steps for the head model 7,
across both components (M¢> adaptation coefficient a.
and Mh) 1: forRoundrin. 1,...,Rd(?
2:  for Node k in 1,..., K in parallel do
Introd t My 3: for Local step t in 0, ..., 7 — 1 do
@ Introduce parameter o = ™ 4: Sample the batch By . ; from Dy.
. . 5: O, = Okrt — H Zi )
as an adaptation coefficient. Vite, zey e B
om0 2Ry
6: if mod (r7 +t,7) = 0 then
7: e Ele Ry rt
8: elseif mod (r7 +t,ar) = 0 then
9: Prrt < % PO Dr,rt
10: Okr10=0krr

11: return O, = & zf;lok,n,,
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Generalization Upper Bound

—@- Generalization upper bound
Experiment generalization results
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# of Clients

Figure: Generalization error and its upper bound derived in this work. The model
is a logistic regression on a synthetic dataset generated from a multivariate
normal distribution.
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FedALS Experimental Results

Image classification (¢ : the convolutional layers of ResNet, h the final

dense layers)
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Figure: Training ResNet-20 on SVHN.
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RIS
FedALS Experimental Results

Image classification (¢ : the convolutional layers of ResNet, h the final
dense layers)

N o redavgl =5
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— FedALS + SCAFFOLD) 7-5/a = 10

T 0 75 W0 im0 15 20
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(a) non-iid (b) iid
Figure: Training ResNet-20 on CIFAR-100.
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RIS
FedALS Experimental Results

LLM fine-tuning (¢ : first 10 Transformer layers, h the final 2 Transformer
layers)
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Figure: Fine-tuning OPT-125M on MultiNLI.
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The Role of &« and Communication Overhead

Table: The accuracy and communication overhead per client after training

’7',\/,"¢>

TMh

ResNet-20 in non-iid setting with 7 =5 and variable a.

VALUE OF o

DATASET

SVHN

CIFAR-10

# OF COMMUNICATED

PARAMETERS

10

25

50
100

0.7010 £ 0.0330
0.8107 £ 0.0278
0.8117 £ 0.0214
0.7201 £ 0.1565
0.6377 £ 0.0520
0.5837 £ 0.0715

0.4651 £ 0.0071
0.5201 =+ 0.0302
0.5224 + 0.0365
0.3814 £ 0.0641
0.2853 + 0.0641
0.2817 £ 0.032

2.344B
0.473B
0.2398B
0.099B
0.052B
0.0298

Peyman Gholami, Hulya Seferoglu (UIC)

FedALS

July 2024

20 /24



FedALS
Different Combinations of ¢, h

0 = [¢, h] = [first L layers, rest of the layers]

Table: Different Combinations of ¢, h for training ResNet-20 in non-iid setting

with 7 =5, o = 10.

VALUE OF L

DATASET

SVHN

CIFAR-10

CIFAR-100

20
16
12

0.6991 + 0.0160
0.7112 £ 0.0471
0.6760 £ 0.0474
0.6381 £ 0.0428
0.6339 £ 0.0446
0.6058 £ 0.0197

0.4383 £ 0.0423
0.4687 £+ 0.0111
0.4125 £ 0.0283
0.3779 £ 0.03451
0.3730 £ 0.0310
0.4013 £ 0.0308

0.4781 £ 0.0123
0.4782 + 0.0087
0.4249 £ 0.0143
0.4085 £ 0.0094
0.4183 £ 0.0108
0.3880 £ 0.0305
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Conclusion

Conclusion

o Characterized generalization error bound federated learning in terms
of local generalization and non-iidness.
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Conclusion

Conclusion

o Characterized generalization error bound federated learning in terms
of local generalization and non-iidness.

@ Showed that less frequent aggregations, hence more local updates
leads to a more generalizable model.
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Conclusion

Conclusion

o Characterized generalization error bound federated learning in terms
of local generalization and non-iidness.

@ Showed that less frequent aggregations, hence more local updates
leads to a more generalizable model.

@ This insight led us to develop FedALS algorithm by increasing local
steps for the initial layers of a deep learning model while doing more
averaging for the final layers.
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Conclusion

Thank Youl
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Conclusion
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