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Introduction Communication overhead

Introduction

Federated learning

Communication cost:

Exchanging models is costly,
especially for large models in
today’s machine learning
applications like LLMs.

Possible solutions:

Local SGD
Mini-batch SGD

Figure: From Lin, Tao, Sebastian U. Stich and Martin
Jaggi. “Don’t Use Large Mini-Batches, Use Local SGD.”
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Introduction Communication overhead

Federated learning

Purpose of communication:

Reducing the consensus distance among clients.

Consensus distance at t: 1
K

∑K
k=1 ∥θ̂t − θk,t∥2, where

θ̂t =
1
K

∑K
k=1 θk,t .

Helps maintain the overall optimization process on a trajectory toward
the global optimum.
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Introduction Communication overhead

Consensus distance

Example:
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Figure: ResNet-20 on CIFAR-10 with 5 clients with non-iid data distribution over
clients (2 classes per client). The early layers responsible for extracting
representations exhibit lower levels of consensus distance.
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Introduction Representation learning

Representation learning
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Introduction Motivation

Motivation

The above example indicates that initial layers show higher similarity,
so they can be aggregated less frequently.

several empirical studies1 show that federated learning with multiple
local updates per round learns a generalizable representation and is
unexpectedly successful in non-iid federated learning.

Motivate us to investigate how local updates affect the
generalization of the model.

1Sashank J. Reddi et al. “Adaptive Federated Optimization”. In: International
Conference on Learning Representations. 2021. url:
https://openreview.net/forum?id=LkFG3lB13U5; Tao Yu, Eugene Bagdasaryan, and
Vitaly Shmatikov. “Salvaging Federated Learning by Local Adaptation”. In: ArXiv
abs/2002.04758 (2020). url:
https://api.semanticscholar.org/CorpusID:211082601.
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Problem Statement Notation

Problem Statement

1 K clients/nodes.

2 Client k has a local dataset Sk = {zk,1, ..., zk,nk}, where
zk,i = (xk,i , yk,i ) is drawn from a distribution Dk over X × Y.

3 Dataset across all nodes is defined as S = {S1, ...,SK}.
4 Mθ = A(S ) is the output of a possibly stochastic function denoted as

A(S ), where Mθ : X → Y is the learned model parameterized by θ.

5 Empirical risk on dataset S :
RS (Mθ)=Ek∼KRSk

(Mθ)=Ek∼K
1
nk

∑nk
i=1 l(Mθ , zk,i )

6 Population risk: R(Mθ) = Ek∼K Rk(Mθ) = Ek∼K,z∼Dk
l(Mθ , z)

7 Generalization error for dataset S and function A(S ):
∆A(S ) = R(A(S ))− RS (A(S ))

8 Expected generalization: ES ∆A(S ) = E{Sk∼Dnk
k }Kk=1

∆A(S )
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Improved Generalization Bounds One-Round FL

One-Round Generalization Bound
Theorem

Let l(Mθ , z) be µ-strongly convex and L-smooth in Mθ , Mθk
= Ak(Sk)

represents the model obtained from Empirical Risk Minimization (ERM)
algorithm on local dataset Sk , i.e., Mθk

= argminM
∑nk

i=1 l(M, zk,i ), and

Mθ̂ = A(S ) is the model after one round of FedAvg (θ̂ = Ek∼K θk).
Then, the expected generalization error is

ES∆A(S ) ≤ Ek∼K

[
LK(k)2

µ
ESk

∆Ak
(Sk)︸ ︷︷ ︸

Expected local generalization

(1)

+ 2

√
L

µ
K(k)

(
ES δk,A(S )︸ ︷︷ ︸

Expected non-iidness

ESk
∆Ak

(Sk)︸ ︷︷ ︸
Expected local generalization

) 1
2
]
,

where δk,A(S ) = RSk
(A(S ))− RSk

(Ak(Sk)) indicates the level of
non-iidness at client k for function A on dataset S .
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Improved Generalization Bounds One-Round FL

One-Round Generalization Bound

ES∆A(S ) ≤ Ek∼K

[
LK(k)2

µ
ESk

∆Ak
(Sk)︸ ︷︷ ︸

Expected local generalization

+ 2

√
L

µ
K(k)

(
ES δk,A(S )︸ ︷︷ ︸

Expected non-iidness

ESk
∆Ak

(Sk)︸ ︷︷ ︸
Expected local generalization

) 1
2
]
,

iid: K(k)2 (enhancement compared to the state of the art2)

noniid: the expected generalization error bound does not necessarily
decrease with averaging.

FedAvg works well in iid setup.

2Leighton Pate Barnes, Alex Dytso, and H. Vincent Poor. “Improved
Information-Theoretic Generalization Bounds for Distributed, Federated, and Iterative
Learning”. In: Entropy 24 (2022). url:
https://api.semanticscholar.org/CorpusID:246634528.
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ES∆A(S ) ≤ Ek∼K

[
LK(k)2

µ
ESk

∆Ak
(Sk)︸ ︷︷ ︸

Expected local generalization
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√
L

µ
K(k)

(
ES δk,A(S )︸ ︷︷ ︸

Expected non-iidness

ESk
∆Ak

(Sk)︸ ︷︷ ︸
Expected local generalization

) 1
2
]
,

Partial client participation:

Case I: Sampling K̂ clients with replacement based on distribution K,
followed by averaging the local models with equal weights. (K(k) → 1

K̂
)

Case II: Sampling K̂ clients without replacement uniformly at random,
then performing weighted averaging of local models. Here, the weight of
client k is rescaled to K(k)K

K̂
. (K(k) → K(k)K

K̂
)
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Improved Generalization Bounds R−Round FL

R−Round Generalization Bound

Zk,r =
⋃
{Bk,r ,t}τ−1

t=0 , where Bk,r ,t is the batch of samples used in
local step t of round r in node k . τ is the duration of one reound.

Empirical risk: 1
R

∑R
r=1 Ek∼K

[
1

|Zk,r |
∑

i∈Zk,r
l(Mθ̂ r

, zk,i )

]
Generalization error:

∆FedAvg (S ) = 1
R

∑R
r=1Ek∼K

[
Ez∼Dk

l(Mθ̂ r
, z)− 1

|Zk,r |
∑

i∈Zk,r
l(Mθ̂ r

, zk,i )

]
Bounded gradient variance:

1
|Zk,r |

∑
i∈Zk,r

∥∇l(M, zk,i )− 1
|Zk,r |

∑
i∈Zk,r

∇l(M, zk,i )∥2 ≤ σ2.
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t=0 , where Bk,r ,t is the batch of samples used in
local step t of round r in node k . τ is the duration of one reound.

Empirical risk: 1
R

∑R
r=1 Ek∼K

[
1

|Zk,r |
∑

i∈Zk,r
l(Mθ̂ r

, zk,i )

]
Generalization error:

∆FedAvg (S ) = 1
R

∑R
r=1Ek∼K

[
Ez∼Dk

l(Mθ̂ r
, z)− 1

|Zk,r |
∑

i∈Zk,r
l(Mθ̂ r

, zk,i )

]
Bounded gradient variance:

1
|Zk,r |

∑
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Improved Generalization Bounds R−Round FL

R−Round Generalization Bound
Theorem

Let l(Mθ , z) be µ-strongly convex and L-smooth in Mθ . Local models at
round r are calculated by doing τ local steps and the gradient variance is
bounded by σ2. The aggregated model at round r is Mθ̂ r

is obtained by
performing FedAvg and where the data points used in round r (i.e., Zk,r )
are sampled without replacement. Then the average generalization error
bound is

1

R

R∑
r=1

Ek∼K

[
2LK(k)2

µ
A+

√
8L

µ
K(k)(AB)

1
2

]
, (2)

where A = Õ

(√
C(Mθ )
|Zk,r | + σ2

µτ + L
µ

)
,

B = Õ

(
E{Zk,r}Kk=1

δk,A({Zk,r}Kk=1) +
σ2

µτ + L
µ

)
, and C(Mθ) shows the

complexity of the model class of Mθ .
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R-Round Generalization Bound

ES ∆FedAvg (S )≤ 1

R

R∑
r=1

Ek∼K

[
2LK(k)2

µ
A+

√
8L

µ
K(k)(AB)

1
2

]

A = Õ

(√
C(Mθ)

|Zk,r |
+

σ2

µτ
+

L

µ

)
,B = Õ

(
E δk,A({Zk,r}Kk=1) +

σ2

µτ
+

L

µ

)
Representation learning Interpretation:

Mθ(x) = (Mϕ ◦Mh )(x) = Mh (Mϕ(x)), C(Mh ) ≪ C(Mϕ)

Our key intuition in this paper is that we can reduce the aggrega-
tion frequency of Mϕ , which leads to a larger τ and |Zk,r |, hence
smaller generalization error bound.

Aggregation frequency of Mϕ cannot be reduced arbitrarily, as it would

increase the empirical risk. (convergence rate: O
(

τ
T +

(
τ
T

) 2
3 + 1√

T

)
,T = τR)
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(√
C(Mθ)

|Zk,r |
+

σ2

µτ
+

L

µ

)
,B = Õ
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FedALS

FedALS: Federated Learning with Adaptive Local Steps

Main idea: to maintain a
uniform generalization error
across both components (Mϕ

and Mh ).

Introduce parameter α =
τMϕ

τMh

as an adaptation coefficient.
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Experiments Generalization bound

Generalization Upper Bound
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Experiment generalization results

Figure: Generalization error and its upper bound derived in this work. The model
is a logistic regression on a synthetic dataset generated from a multivariate
normal distribution.
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Experiments FedALS

FedALS Experimental Results

Image classification (ϕ : the convolutional layers of ResNet, h the final
dense layers)
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Figure: Training ResNet-20 on SVHN.
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Image classification (ϕ : the convolutional layers of ResNet, h the final
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Figure: Training ResNet-20 on CIFAR-100.
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Experiments FedALS

FedALS Experimental Results

LLM fine-tuning (ϕ : first 10 Transformer layers, h the final 2 Transformer
layers)
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Figure: Fine-tuning OPT-125M on MultiNLI.
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Experiments FedALS

The Role of α and Communication Overhead

α =
τMϕ

τMh

Table: The accuracy and communication overhead per client after training
ResNet-20 in non-iid setting with τ = 5 and variable α.

Value of α
Dataset

# of communicated

SVHN CIFAR-10 parameters

1 0.7010 ± 0.0330 0.4651 ± 0.0071 2.344B

5 0.8107 ± 0.0278 0.5201 ± 0.0302 0.473B

10 0.8117 ± 0.0214 0.5224 ± 0.0365 0.239B

25 0.7201 ± 0.1565 0.3814 ± 0.0641 0.099B

50 0.6377 ± 0.0520 0.2853 ± 0.0641 0.052B

100 0.5837 ± 0.0715 0.2817 ± 0.032 0.029B
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Experiments FedALS

Different Combinations of ϕ,h

θ = [ϕ,h ] = [first L layers, rest of the layers]

Table: Different Combinations of ϕ,h for training ResNet-20 in non-iid setting
with τ = 5, α = 10.

Value of L
Dataset

SVHN CIFAR-10 CIFAR-100

20 0.6991 ± 0.0160 0.4383 ± 0.0423 0.4781 ± 0.0123

16 0.7112 ± 0.0471 0.4687 ± 0.0111 0.4782 ± 0.0087

12 0.6760 ± 0.0474 0.4125 ± 0.0283 0.4249 ± 0.0143

8 0.6381 ± 0.0428 0.3779 ± 0.03451 0.4085 ± 0.0094

4 0.6339 ± 0.0446 0.3730 ± 0.0310 0.4183 ± 0.0108

1 0.6058 ± 0.0197 0.4013 ± 0.0308 0.3880 ± 0.0305
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Conclusion

Conclusion

Characterized generalization error bound federated learning in terms
of local generalization and non-iidness.

Showed that less frequent aggregations, hence more local updates
leads to a more generalizable model.

This insight led us to develop FedALS algorithm by increasing local
steps for the initial layers of a deep learning model while doing more
averaging for the final layers.
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Conclusion

Thank You!
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