Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling

July 2024

Motivation

Why Biological Foundation Models?

A generative model over sequences can learn conservation and evolutionary pressure.

Positions

Existing Applications of Foundation Models in Biology

RESEARCH ARTICLE | STRUCTURE PREDICTION

Evolutionary-scale prediction of atomic-level protein structure with a language model

ESMFold Protein Folding

Why DNA Foundation Models?

- Extend to non-coding and regulatory regions of the genome
- Solve tasks that protein models cannot solve, e.g., gene annotation

DNABERT-2: EFFICIENT FOUNDATION MODEL AND BENCHMARK FOR MULTI-SPECIES GENOME

> The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics

DNA language models are powerful

predictors of genome-wide variant effects

HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution

Challenges

Long-rangeBiReverseinteractionsdirectionalitycomplementstrands

Distal interactions

 Unlike proteomics, genomics requires modeling distal interactions (up to 1M base pairs)

Causal models insufficient to model DNA

Reverse complement (RC) DNA strands contain equivalent information

Models that respect this symmetry have been found to yield improved performance (Zhou et. al, 2021; Mallet et. al, 2021)

Equivariance: Models commute with RC operation

CATTGT

Equivariance: Models commute with RC operation

ACAATG-**Reverse Complement** sequences CATTGI

RC input corresponds to RC output

Caduceus

Caduceus highlights

Memory-efficient, bi-directional extension of Mamba

RC-equivariant language modeling

 \checkmark

Improved performance over <u>much</u> larger Transformers-based and comparably-sized SSM-based models

Building towards Caduceus

Building towards Caduceus: Long-range

Leveraging the original Mamba module takes advantage of the improved **long-range** sequence modeling of this architecture

Two dominant approaches to sequence modeling

Transformers

Recurrent Neural Networks

Transformers

Interactions between all elements

Efficient training

X Fixed context size

Linear scaling at inference

Recurrent Neural Networks

Fixed-dimensional hidden X representations

Vanishing / exploding gradients

X Slow to train

Mamba (and friends)

New hardware-aware architectures targeting large language models

Mamba (Gu and Dao 2023) S5 (Smith et al. 2022) Based (Arora et al. 2024) Griffin (De et al. 2024) GLA (Yang et al. 2023) RetNet (Sun et al. 2023)

Why is this important now?

Building towards Caduceus: Bi-directional

Sharing weights for forward and backward projections enables memory-efficient **bi-directional** sequence modeling

"Strategic" Weight-tieing

Majority of the parameters in a Mamba block come from linear projections

"Strategic" Weight-tieing

Building towards Caduceus: RC equivariant

Using parameter-sharing and running modules on sequences and their RC versions enables **RC-equivariance**

Putting it all together

Experiments

Improvements in pre-training loss

Competitive on standard benchmarks even against much larger models

	> 100M PARAM. MODELS			< 2M PARAM. MODELS		
	ENFORMER	DNABERT-2	NT-v2	HYENADNA	CADUCEUS-PH	CADUCEUS-PS
	(252M)	(117 M)	(500M)	(1.6M)	(1.8M)	(1.8M)
Histone Markers						
H3	$0.719 {\pm} 0.048$	$0.785 {\pm} 0.033$	$0.784 {\pm} 0.047$	$0.779 {\pm} 0.037$	0.815±0.048	$0.799 {\pm} 0.029$
H3K14AC	$0.288 {\pm} 0.077$	$0.516 {\pm} 0.028$	$0.551 {\pm} 0.021$	$0.612 {\pm} 0.065$	0.631±0.026	$0.541 {\pm} 0.212$
НЗКЗ6МЕЗ	$0.344 {\pm} 0.055$	$0.591 {\pm} 0.020$	0.625±0.013	<u>0.613</u> ±0.041	$0.601 {\pm} 0.129$	$0.609 {\pm} 0.109$
Н3к4ме1	$0.291 {\pm} 0.061$	$0.511 {\pm} 0.028$	$0.550 {\pm} 0.021$	$0.512 {\pm} 0.024$	0.523 ± 0.039	$0.488 {\pm} 0.102$
Н3к4ме2	$0.211 {\pm} 0.069$	$0.336 {\pm} 0.040$	$0.319 {\pm} 0.045$	$0.455 {\pm} 0.095$	0.487±0.170	$0.388 {\pm} 0.101$
Н3к4ме3	$0.158 {\pm} 0.072$	$0.352 {\pm} 0.077$	$0.410 {\pm} 0.033$	0.549±0.056	0.544 ± 0.045	$0.440 {\pm} 0.202$
НЗК79МЕЗ	$0.496 {\pm} 0.042$	$0.613 {\pm} 0.030$	$0.626 {\pm} 0.026$	$0.672 {\pm} 0.048$	0.697 ±0.077	$0.676 {\pm} 0.026$
H3K9AC	$0.420 {\pm} 0.063$	$0.542 {\pm} 0.029$	$0.562 {\pm} 0.040$	$0.581 {\pm} 0.061$	0.622±0.030	0.604 ± 0.048
H4	$0.732 {\pm} 0.076$	$0.796 {\pm} 0.027$	$\textit{0.799}{\scriptstyle\pm0.025}$	$0.763 {\pm} 0.044$	0.811±0.022	$0.789 {\pm} 0.020$
H4AC	$0.273 {\pm} 0.063$	$0.463 {\pm} 0.041$	$0.495{\pm}0.032$	$0.564{\scriptstyle\pm0.038}$	0.621±0.054	$0.525 {\pm} 0.240$
Regulatory Annotation						
ENHANCER	$0.451 {\pm} 0.108$	$0.516{\pm}0.098$	0.548 ±0.144	$0.517 {\pm} 0.117$	$0.546{\pm}0.073$	$0.491 {\pm} 0.066$
ENHANCER TYPES	$0.309 {\pm} 0.134$	$0.423 {\pm} 0.051$	$0.424{\scriptstyle\pm0.132}$	$0.386 {\pm} 0.185$	0.439±0.054	$0.416 {\pm} 0.095$
PROMOTER: ALL	$0.954 {\pm} 0.006$	0.971 ± 0.006	0.976±0.006	$0.960 {\pm} 0.005$	0.970 ± 0.004	$0.967 {\pm} 0.004$
Nontata	$0.955{\pm}0.010$	$0.972 {\pm} 0.005$	0.976 ±0.005	$0.959 {\pm} 0.008$	0.969 ± 0.011	$0.968 {\pm} 0.006$
TATA	$0.960{\scriptstyle\pm0.023}$	$0.955{\pm}0.021$	0.966 ±0.013	$0.944{\pm}0.040$	$0.953{\pm}0.016$	0.957 ± 0.015
Splice Site Annotation				3.531		
ALL	$0.848 {\pm} 0.019$	$0.939 {\pm} 0.009$	$0.983 {\pm} 0.008$	0.956 ± 0.011	$0.940 {\pm} 0.027$	$0.927 {\pm} 0.021$
ACCEPTOR	$0.914 {\pm} 0.028$	$0.975 {\pm} 0.006$	$0.981{\pm}0.011$	0.958 ± 0.010	$0.937 {\pm} 0.033$	$0.936 {\pm} 0.077$
DONOR	$0.906 {\pm} 0.027$	$0.963{\pm}0.006$	$\textbf{0.985}{\scriptstyle \pm 0.022}$	$\underline{0.949}{\pm}0.024$	$0.948 {\pm} 0.025$	$0.874 {\pm} 0.289$

Improved eQTL causal SNP prediction with Caduceus

Predicting Effects of Variants on Gene Expression

Improved eQTL causal SNP prediction with Caduceus

Conclusion

Introduced bi-directional and RC equivariant extensions of Mamba

Proposed Caduceus, a novel DNA foundation model

Improved performance over <u>much</u> larger Transformers-based and comparably-sized SSM-based models

Thank you!

Thu 25 Jul 11:30 a.m. – 1 p.m. CEST Hall C 4-9 #314

https://arxiv.org/abs/2403.03234

https://github.com/kuleshov-group/caduceus

