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Applications to Tensors

How to Efficiently Model High-Dimensional,
Sparse Latent Spaces!?

Tensors can be informally understood as matrices generalized to M > 2 dimensions
or modes—e.g., while a matrix ¥ contains observations y; ,,an M-mode tensor Y

contains observations y,
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Sparse and high-dimensional data are
ubiquitous in scientific applications.
Practitioners often seek to build complex
models for such data, whose parameters and
latent variables are themselves high-

What is the Tucker Decomposition!?

Tucker decompositions seek a multi-linear reconstruction ¥ =~ Y.

dimensional.
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Hurdle Conjugate Priors for Modeling Sparsity
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Convolution-Closed Likelihoods

A distribution F, is convolution-closed in 4 if for independently sampled
Xy~ F, X, ~F), X+ X, ~F; ,, inits marginal.

We apply the convolution-closed hurdle motif to sparsify the core tensor of a Tucker
decomposition, speeding up inference.

Many closed-convolution distributions are members of the exponential family and have

closed-form conjugate priors. 1
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Separates Subjects by Phenotype

The Closed-Convolution Hurdle Motif

Model Inference
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on all the others held fixed.

A Data Augmentation Scheme That Leads to Faster Inference and ldentifies Sparse Multi-linear Interactions

Conditioning on ¥y, y; drops the dependence of P(D; | —\, ) on ¢;.We can
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