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In aerospace engineering, optimizing the design 
and processing of composites under various 
conditions is challenging due to their nonlinear 
and complex behavior. 

Main contributions

● An advanced Physics-Informed Deep Operator 
Network (PIDON) to address the complexities in 
simulating highly nonlinear aerospace 
composite processes. 

● PIDON with enhanced predictive accuracy and 
efficiency, enabling real-time design 
optimization. 

Physics-informed DeepONet architecture

Nonlinear decoder: Improves the 
representation of complex system 
behaviors.
Multiple branch networks: Allow the 
model to capture a wide range of 
physical phenomena.
Domain Decomposition: Divides the 
problem into smaller, more manageable 
sub-problems.
Curriculum Learning: Gradually increases 
the complexity of training tasks to 
enhance model performance.

Model component analysis

Metric Number of nonlinear decoders

1 5 7

Max error (°C) 6.1 3.1 2.3

Seconds/epoch 40 56 61

Design space size
(Rel. L2 error x 10-3)

Regular 
training

Curriculum 
learning

Small 6.8 2.8

Medium 9.22 3.27

Large 13 4.32

 Effect of curriculum learning:

 Effect of domain decomposition:
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Vanilla DeepONet

● Numerical methods can 
be slow, computationally 
intensive.

● PINNs lack generalization 
and adaptability to 
dynamic process 
configurations.

● Vanilla DeepONet fails to 
capture high nonlinearities.

Comparison with FE simulations

● 20x faster than FE.
● Real-time predictions for dynamic configurations.
● Excels in high-dimensional design input spaces.


