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DiffusionPDE solves forward and inverse PDEs from partial observations using diffusion models.
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Motivation: PDE Solver

Darcy Flow (Static System)

In fluid flow through porous media, 
𝑎 is the material's permeability. 𝑢 is 
the pressure field whose gradient 
drives the flow.

Navier-Stokes (Dynamic System)
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Predict future states of a system (forward process) and estimate 
underlying physical properties from state measurement (inverse process)

𝑢 is the velocity field of the flow.

0.5 seconds
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Numerical Solver

Idea: discretize the space and solve the linear system.
e.g. Finite differential method (FDM): approximate the derivative with neighbors

Numerical solvers are accurate but expensive.

5-point stencil for Laplacian:
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Physics-Informed Neural Network (PINNs)

Idea: optimize a neural network using PDE constraints as self-supervised losses 
to output the PDE solution.

Given PDE function ,
: The difference between prediction and ground truth
: The difference between 𝑓(𝑥) and 0, ensuring physical property

Total loss

PINNs are simple and can be applied to various PDE families, but they are less 
accurate and hard to optimize.
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Neural Operator

Idea: directly map between coefficient (or initial state) space and solution (or final 
state) space.
e.g. FNO (map on the Fourier space)

Li et al, 2021
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Limitation of Prior Work

They assume full observation on the coefficient (or initial state) space for the 
forward process, and full observation on the solution (or final state) space for the 
inverse process.

In the real world, however, only partial data is likely observed.
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Inverse PDE Solvers Under Partial Observation

Idea: leverage generative priors.
e.g. GraphPDE: learns a bounded forward GNN model and latent space model.

The GNN prior faces challenges when solving high-resolution PDEs.
The autodecoder of the latent space model is also weaker than diffusion models.

Zhao et al, 2022
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DiffusionPDE: Using the Diffusion Model as the Prior
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Train the diffusion model on the joint distribution of 𝑎 and 𝑢
(concatenated on the channel dimension)

Step 1.

DiffusionPDE Pipeline
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Step 2.

Gradually denoise the random noise 
during the inferenceDiffusionPDE Pipeline
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DiffusionPDE Pipeline

Step 3.

Guide the sampling with sparse 
observation and known PDE function
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Darcy Flow Navier-Stokes Equation

DiffusionPDE Denoising Process
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Sparse Observation & PDE Guided Sampling

Idea: guide the sampling at each step 𝑖 with corresponding distribution 𝑥!

Observation loss:

PDE loss:

Observation LossObserved Values
PDE Condition: 𝑓 · = 𝟎

PDE LossPre-trained Diffusion Prior

Pre-trained denoiser

'𝒙!" = 𝐷# 𝒙" : Clean image estimated at step 𝑖

𝑛: number of observation points

𝑚: number of total pixels on the image
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Main Evaluation Results

v Solve both forward problems and inverse problems under sparse observation.
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Main Evaluation Results

v Solve both forward problems and inverse problems under sparse observation.
Ours

Non-bounded Navier-Stokes equation on the vorticity field.
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Main Evaluation Results

v Solve higher-resolution (128×128) inverse problems under sparse 
observation using different priors.

Bounded Navier-Stokes equation on the velocity field with 2D cylinder obstacle of random radius 
at random location.

Ours



University of Michigan 17

Main Evaluation Results

v Recover 𝑎 and 𝑢 simultaneously with sparse observation at any side.

2D Darcy Flow equation with no-slip boundary.
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Recovering Solutions Throughout a Time Interval

v Recover 𝑢":$ from continuous observations on sparse sensors.

1D Burgers’ equation with periodic boundary conditions.

Ours



University of Michigan 19

Additional Analysis

v DiffusionPDE improves its performance with both PDE and observation 
guidance rather than only with observation guidance.
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Additional Analysis

v DiffusionPDE is robust to random noise on the sparse observation.

v DiffusionPDE is robust to different sampling patterns of the sparse 
observation.
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Conclusion
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v DiffusionPDE can solve forward and inverse processes simultaneously.

v DiffusionPDE can recover coefficient and solution spaces with very sparse 
observation, outperforming SOTA methods.

v DiffusionPDE highlights the opportunity of solving PDEs with one single 
generative model.
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Thank you!
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