Enhancing Peak Assignment in ¹³C NMR Spectroscopy – A Novel Approach Using Multimodal Alignment

Dr. Hao Xu[†], Zhengyang Zhou[†], Dr. Pengyu Hong^{*}

Department of Computer Science, Brandeis University

† Equal contribution

Introduction to ¹³C NMR Spectroscopy

- Nuclear Magnetic Resonance (NMR) spectroscopy is a technique used to determine the structure of molecules by providing the environment (resonance frequency) of focused nuclei within a molecule, which is termed as chemical shifts and expressed in ppm (parts per million).
- ¹³C NMR spectroscopy focuses on the ¹³C isotope. ¹³C chemical shifts, typically range from 0 to 200 pm, tell the positions of carbon atoms.

Introduction to ¹³C NMR Spectroscopy

■ DEPT (<u>D</u>istortionless <u>E</u>nhancement by <u>P</u>olarization <u>T</u>ransfer) aids in determining the multiplicities of carbon atoms (CH, CH₂, and CH₃)

CH₃: 1° Carbon CH₂: 2° Carbon CH: 3° Carbon C: 4° Carbon Original ¹³C NMR

DEPT-90°

DEPT-135°

Opportunities

Peak Assignment

Candidate Ranking

Molecule Retrieval

Propose: K-M³AID (Knowledge-guided Multi-level Multimodal Alignment with Instance-wise Discrimination)

- Training inputs: (a) Molecular graphs: nodes represent atoms; edges represent chemical bonds
 - (b) ¹³C NMR spectra: peaks positions (ppm) and peak types (CH₃, CH₂, CH, or C)
- Training outputs: (a) Probabilities of molecule-spectrum matching
 - (b) Probabilities of atom-peak alignments

Knowledge-guided Instance-wise Discrimination

Use domain knowledge to design soft contrastive learning

- More flexible than using binary negative/positive pairs
- Reduce potential bias in pre-defining positive/negative pairs

The similarity between the *i*-th peak (P_i) and the *r*-th node (N_m) should be "consistent" with the similarity between the *i*-th and *j*-th peaks

$$softmax(P_i \cdot N_r) \propto softmax\left(\frac{\tau_2}{\left|S_i - S_j\right| + \tau_1}\right)$$

where τ_1 and τ_2 are hyperparameters

Experiment Setting

■ **Dataset:** ¹³C NMR spectra of ~20k molecules in nmrshiftdb2*.

Contrast Learning Baselines:

- Strong Positive (SP): Pair (*i*-th atom, *j*-th peak) is positive **iff** the chemical shift of the *i*-th atom == the ppm of the *j*-th peak
- Weak Positive (WP): Pair (*i*-th atom, *j*-th peak) is positive **iff** the difference between the chemical shift of the *i*-th atom and the ppm of the *j*-th peak \leq a user-defined threshold (*th*).

* nmrshiftdb2 (https://nmrshiftdb.nmr.uni-koeln.de/)

Experiments – Peak Assignment

Five-fold Cross-Validation Results

Alignment	SP	WP (th = 1)	WP (th = 5)	WP (th = 10)	K-M ³ AID
Graph-Level	93.5 ± 0.6	91.3 ± 0.8	90.3 ± 0.6	88.4 ± 1.4	95.5 ± 0.4
Node-Level	89.3 ± 0.4	83.7 ± 0.6	79.8 ± 0.5	66.1 ± 2.5	90.3 ± 0.1

Validation results of K-M³AID, stratified by the number of carbons

Experiments – Peak Assignment

K-M³AID excels in two challenging scenarios:

- \triangleright Local contexts of carbons exhibit a high degree of similarity, such as C_0 and C_4 in the first example below, both are all secondary aliphatic carbons, next to tertiary carbons, and on the same ring.
- > Carbons exhibit symmetry within the same molecule (second example below).

Experiments – Isomer Recognition

Formula	#Isomers	SP	WP (th = 1)	K-M ³ AID
C ₄ H ₆ O	15	86.7	86.7	100
C ₉ H ₉ N	15	86.7	80.0	100
C ₇ H ₁₁ NO ₃	14	78.6	85.7	100
C ₆ H ₁₃ NO	23	91.3	91.3	100
C ₈ H ₇ NO ₄	13	92.3	84.6	100
C ₁₅ H ₂₄ O	16	93.8	93.8	100
C ₁₁ H ₁₄	10	90.0	80.0	100
C ₇ H ₁₅ NO	14	85.7	85.7	100
$C_{10}H_{16}O_{2}$	26	92.3	84.6	100
C ₈ H ₁₅ N	11	81.8	90.9	100

Summary

- Developed K-M³AID a knowledge-guided cross-modal contrastive learning approach, leveraging domain-specific continuous features with natural order.
- Demonstrated the effectiveness of K-M³AID in three tasks
 - ¹³C NMR peak assignment
 - Molecular retrieval using ¹³C NMR
 - Isomer recognition using ¹³C NMR.

NSF DRL 2314156

NSF OAC 1920147

Thank You!