Enhancing Peak Assignment in ¹³C NMR Spectroscopy – A Novel Approach Using Multimodal Alignment Dr. Hao Xu[†], Zhengyang Zhou[†], Dr. Pengyu Hong^{*} Department of Computer Science, Brandeis University † Equal contribution ## Introduction to ¹³C NMR Spectroscopy - Nuclear Magnetic Resonance (NMR) spectroscopy is a technique used to determine the structure of molecules by providing the environment (resonance frequency) of focused nuclei within a molecule, which is termed as chemical shifts and expressed in ppm (parts per million). - ¹³C NMR spectroscopy focuses on the ¹³C isotope. ¹³C chemical shifts, typically range from 0 to 200 pm, tell the positions of carbon atoms. ## Introduction to ¹³C NMR Spectroscopy ■ DEPT (<u>D</u>istortionless <u>E</u>nhancement by <u>P</u>olarization <u>T</u>ransfer) aids in determining the multiplicities of carbon atoms (CH, CH₂, and CH₃) CH₃: 1° Carbon CH₂: 2° Carbon CH: 3° Carbon C: 4° Carbon Original ¹³C NMR DEPT-90° DEPT-135° ## **Opportunities** **Peak Assignment** #### **Candidate Ranking** #### **Molecule Retrieval** ## Propose: K-M³AID (Knowledge-guided Multi-level Multimodal Alignment with Instance-wise Discrimination) - Training inputs: (a) Molecular graphs: nodes represent atoms; edges represent chemical bonds - (b) ¹³C NMR spectra: peaks positions (ppm) and peak types (CH₃, CH₂, CH, or C) - Training outputs: (a) Probabilities of molecule-spectrum matching - (b) Probabilities of atom-peak alignments ## Knowledge-guided Instance-wise Discrimination Use domain knowledge to design soft contrastive learning - More flexible than using binary negative/positive pairs - Reduce potential bias in pre-defining positive/negative pairs The similarity between the *i*-th peak (P_i) and the *r*-th node (N_m) should be "consistent" with the similarity between the *i*-th and *j*-th peaks $$softmax(P_i \cdot N_r) \propto softmax\left(\frac{\tau_2}{\left|S_i - S_j\right| + \tau_1}\right)$$ where τ_1 and τ_2 are hyperparameters ## **Experiment Setting** ■ **Dataset:** ¹³C NMR spectra of ~20k molecules in nmrshiftdb2*. #### Contrast Learning Baselines: - Strong Positive (SP): Pair (*i*-th atom, *j*-th peak) is positive **iff** the chemical shift of the *i*-th atom == the ppm of the *j*-th peak - Weak Positive (WP): Pair (*i*-th atom, *j*-th peak) is positive **iff** the difference between the chemical shift of the *i*-th atom and the ppm of the *j*-th peak \leq a user-defined threshold (*th*). * nmrshiftdb2 (https://nmrshiftdb.nmr.uni-koeln.de/) ## Experiments – Peak Assignment Five-fold Cross-Validation Results | Alignment | SP | WP (th = 1) | WP (th = 5) | WP (th = 10) | K-M ³ AID | |-------------|----------------|----------------|----------------|----------------|----------------------| | Graph-Level | 93.5 ± 0.6 | 91.3 ± 0.8 | 90.3 ± 0.6 | 88.4 ± 1.4 | 95.5 ± 0.4 | | Node-Level | 89.3 ± 0.4 | 83.7 ± 0.6 | 79.8 ± 0.5 | 66.1 ± 2.5 | 90.3 ± 0.1 | #### Validation results of K-M³AID, stratified by the number of carbons ## Experiments – Peak Assignment #### K-M³AID excels in two challenging scenarios: - \triangleright Local contexts of carbons exhibit a high degree of similarity, such as C_0 and C_4 in the first example below, both are all secondary aliphatic carbons, next to tertiary carbons, and on the same ring. - > Carbons exhibit symmetry within the same molecule (second example below). ## Experiments – Isomer Recognition | Formula | #Isomers | SP | WP (th = 1) | K-M ³ AID | |--|----------|------|-------------|----------------------| | C ₄ H ₆ O | 15 | 86.7 | 86.7 | 100 | | C ₉ H ₉ N | 15 | 86.7 | 80.0 | 100 | | C ₇ H ₁₁ NO ₃ | 14 | 78.6 | 85.7 | 100 | | C ₆ H ₁₃ NO | 23 | 91.3 | 91.3 | 100 | | C ₈ H ₇ NO ₄ | 13 | 92.3 | 84.6 | 100 | | C ₁₅ H ₂₄ O | 16 | 93.8 | 93.8 | 100 | | C ₁₁ H ₁₄ | 10 | 90.0 | 80.0 | 100 | | C ₇ H ₁₅ NO | 14 | 85.7 | 85.7 | 100 | | $C_{10}H_{16}O_{2}$ | 26 | 92.3 | 84.6 | 100 | | C ₈ H ₁₅ N | 11 | 81.8 | 90.9 | 100 | ### Summary - Developed K-M³AID a knowledge-guided cross-modal contrastive learning approach, leveraging domain-specific continuous features with natural order. - Demonstrated the effectiveness of K-M³AID in three tasks - ¹³C NMR peak assignment - Molecular retrieval using ¹³C NMR - Isomer recognition using ¹³C NMR. NSF DRL 2314156 NSF OAC 1920147 ## Thank You!