## Cross-modality Matching and Prediction of Perturbation Responses with Labeled Gromov-Wasserstein Optimal Transport ICML AI4Science workshop



Jayoung Ryu, 7/26/2024

1. Labeled GW



# **Cross-modality matching & prediction**

- Perturbation profiling in different modalities has their own strengths & weaknesses
  - Modality-specific information
  - Scale vs resolution



## **Cross-modality prediction as matching + prediction**

Matching

f



Maps sample to sample

Sample label granularity **Prediction model accuracy** 

 $\underset{\theta}{\operatorname{argmin}} \sum_{ij} \pi_{ij} (y_j - f_{\theta}(x_i))^2$ 



Maps group means to group means



Maps overall mean to overall mean



## **Cross-modality prediction as matching + prediction**

Matching



Sample label granularity **Prediction model accuracy** 

 $\underset{\theta}{\operatorname{argmin}} \sum_{ij} \pi_{ij} (y_j - f_{\theta}(x_i))^2$ 





### How good of a matching can we get? How much does this improve the prediction?



## **Background: Sample matching with Optimal Transport**

Matching within the **same space**: Optimal Transport

 $\mu, \nu$ : Probability distribution defined over  $\mathcal{X}, \mathcal{Y}$  $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$  $\Pi(\mu, \nu) = \begin{cases} \pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) : \int_{\mathcal{Y}} \pi(x, y) \, dy = \mu(x), \\ \end{cases}$ 

$$\mathcal{OT}(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} C(\mu, \nu) = \int_{\pi \in \Pi(\mu, \nu)} \int_{\pi \in \Pi(\mu, \mu)} \int_{\pi \in \Pi(\mu, \mu)} \int_{\pi \in \Pi(\mu, \nu)} \int_{\pi \in \Pi(\mu, \mu)} \int_{\pi$$

 $\pi^*$ : optimal [transport plan/coupling]

$$\int_{\mathcal{X}} \pi(x, y) \, dx = \nu(y) \bigg\}$$



https://www.microsoft.com/en-us/research/blog/measuringdataset-similarity-using-optimal-transport/

## $(x, y)d\pi(x, y)$

## **Background: Matching across different spaces Gromov-Wasserstein Optimal Transport**

- the within-space cost.

$$\mathcal{GW}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \int_{\chi \times \mathcal{Y}} \int_{\chi \times \mathcal{Y}} \mathcal{C}(\mathcal{C}_{\chi}(\chi))$$

Cost function  $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$  does not make sense for  $\mathcal{X}$  and  $\mathcal{Y}$  are in different spaces. Instead of minimizing total distances of moving X to  $\mathcal{Y}$ , find  $\pi$  that minimizes differences of





## **Cross-modality prediction as matching + prediction**















https://ott-jax.readthedocs.io/en/latest/tutorials/gromov\_wasserstein.html



## Labeled Entropic Gromov-Wasserstein Optimal Transport

Contribution:

- Entropic GW with labels will solve OT problem with constrained  $\Pi^l$ .
- We show  $\Pi^l$ -constrained OT still can be solved with Sinkhorn-Knopp algorithm.
- Implemented in OTT-jax



 $\Pi^l = \{ \pi \in \Pi | \pi_{ii} > 0 \Rightarrow B_{ii} = 1 \}$ 

 $\pi^{k+1} \leftarrow \underset{\pi \in \Pi^{l}}{\operatorname{argmin}} \int_{X \times \mathcal{Y}} f(c_X, c_Y, \pi^k) \pi(x, y) - \epsilon H(\pi)$ 

Algorithm 1 Computation of *l*-constrained coupling for EGW

**Input:**  $C_{\mathcal{X}}, C_{\mathcal{Y}}, \epsilon, B, p, q$ Initialize T.

### repeat

// compute  $c_s = c(C_X, C_Y) \otimes T$  as in (2).  $c_s \leftarrow \sum_{k=1}^L c_{C_{\mathcal{X}},C_{\mathcal{Y}}}^k - h_1(C_{\mathcal{X}}^k)T^kh_2(C_{\mathcal{Y}}^k)^T.$ // Sinkhorn iterations to compute  $\mathcal{T}^{l}(c_{s}, p, q)$ Initialize  $a \leftarrow 1$ , set  $K \leftarrow e^{-c_s/\epsilon} \otimes B$ . repeat  $b \leftarrow \frac{q}{K^T a}, a \leftarrow \frac{q}{K b}$ until convergence

Update  $T \leftarrow diag(a)(e^{-c_s/\epsilon} \otimes B)diag(b)$ until convergence





# **Experiment on Perturb-CITE-seq dataset**

In collaboration with Dr. Kelvin Chen, Osaka University

- 13 selected kinase inhibitors with large effects, total 8486 cells
  - 3 dosages: 100nM, 1uM, 10uM
- Predicting 2000 genes (with highest variability) from 123 proteins





## **Results (Perturb-CITE-seq)**

### Label-aware approach works better than label-agnostic or per-label matching

Table 1. Evaluation metrics of OT and GW approaches for sample matching, prediction, and feature matching tasks.

| Matching          |           |                     | Prediction          |              |                      |             |                      |             | Featu   |              |               |
|-------------------|-----------|---------------------|---------------------|--------------|----------------------|-------------|----------------------|-------------|---------|--------------|---------------|
| Method            |           | Bary<br>FOSCTTM (↓) | Dosage<br>match (†) | Mean<br>rank | $R_v$ ( $\uparrow$ ) | $ ho_v$ (†) | $R_s$ ( $\uparrow$ ) | $ ho_s$ (†) | MSE (↓) | Mean<br>rank | Enric<br>ment |
| Perfect           |           | 0                   | 1                   | -            | 0.107                | 0.118       | 0.163                | 0.149       | 0.258   | -            | 6.9           |
| By dosage         |           | 0.239               | 1                   | -            | 0.0812               | 0.0448      | 0.0903               | 0.0863      | 0.264   | -            | 5.1           |
| Uniform per label |           | 0.298               | 0.357               | -            | 0.0794               | 0.0403      | 0.0761               | 0.0781      | 0.264   | -            | 1.8           |
| EOT               | no label  | 0.428               | 0.040               | 9            | 0.0482               | 0.007       | 0.0068               | 0.0063      | 0.287   | 7            | 1.1           |
|                   | per label | 0.336               | 0.346               | 5            | 0.0544               | 0.0239      | 0.0345               | 0.0307      | 0.283   | 5.2          | 1.2           |
| ECOOT             | no label  | 0.414               | 0.049               | 8            | 0.053                | 0.0207      | 0.0395               | 0.0408      | 0.282   | 5            | 1.0           |
|                   | labeled   | 0.270               | 0.456               | 2            | 0.0852               | 0.0523      | 0.0854               | 0.0778      | 0.265   | 1.6          | 5.3           |
| EGWOT             | no label  | 0.373               | 0.068               | 7            | 0.0631               | 0.0227      | 0.0302               | 0.034       | 0.282   | 4.8          | 3.7           |
|                   | per label | 0.332               | 0.381               | 4            | 0.0785               | 0.0449      | 0.0737               | 0.0737      | 0.265   | 2.6          | 1.2           |
|                   | labeled   | 0.283               | 0.452               | 3            | 0.0836               | 0.044       | 0.0854               | 0.0825      | 0.264   | 1.8          | 19.           |
| DAVAE             | no label  | 0.231               | 0.206               | 3            | 0.0342               | -0.0069     | 0.0006               | -0.0001     | 0.33    | 8            | -             |
|                   | labeled   | 0.242               | 0.205               | 4            | 0.0182               | -0.0079     | -0.0016              | -0.0014     | 0.332   | 9            | -             |



# Takeaways

- Labeled GW improves matching & prediction results for coarse-labeled data
- Input for matching
  - Cost matrix should be valid, major modality-specific should be removed prior to GW Imaging modality & sequencing-specific variations

    - Effect of different latent representations to calculate matching (representation learning of images)
- Interpretability
  - sample matching

• Learn feature-feature transport in the raw space as in Co-OT, based on learned sample-

# Takeaways

Labeled GW improves matching & prediction results for perturbation data 

### Input for matching

- Cost matrix should be valid, major modality-specific should be removed prior to GW
  - Imaging modality & sequencing-specific variations
  - Effect of different latent representations to calculate matching (representation learning of  $\bullet$ images)
- Interpretability
  - sample matching

### • Learn feature-feature transport in the raw space as in Co-OT, based on learned sample-

# Takeaways

- Labeled GW improves matching & prediction results for perturbation data
- Input for matching
  - Cost matrix should be valid, major modality-specific should be removed prior to GW Imaging modality & sequencing-specific variations

    - Effect of different latent representations to calculate matching (representation learning of images)
- Interpretability
  - $\bullet$ sample matching

Learn feature-feature transport in the raw space as in Co-OT, based on learned sample-

## Acknowledgements

Romain Lopez Taka Kudo Charlotte Bunne Aviv Regev Luca Pinello

# Thanks for listening!



