Large-scale discovery of experimental designs in Super-Resolution Microscopy with XLuminA

Carla Rodríguez *, Sören Arlt, Leonhard Möckl and Mario Krenn

Max Planck Institute for the Science of Light, Erlangen, Germany

* <u>carla.rodriguez@mpl.mpg.de</u>

arXiv:2310.08408

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

ABSTRACT SPACE OF ALL EXPERIMENTAL SETUPS

Contains all the **discrete arrangements** of the optical elements and their variable optical parameters (e.g., phase)

Carla Rodríguez

carla.rodriguez@mpl.mpg.de

Experimental blueprint with exceptional and useful property

carla.rodriguez@mpl.mpg.de

ABSTRACT SPACE OF ALL EXPERIMENTAL SETUPS

Carla Rodríguez

carla.rodriguez@mpl.mpg.de

 \rightarrow

Experimental blueprint with exceptional and useful property

Experimental areas and ideas explored by human researchers

Experimental areas to be explored by AI

THE TOPS THICTION. THE SOLUMATES WOLKINGW 15 Fig. 1. We start by feeding the system ndom set of optical parameters, which shape re design on a virtual optical table. The per the virtual experiment's computed by the s nich, leads to detected light offers sintly for e camera), From those simulated outputs, t e functionace for the spot size, is c improve the metric of the cost function, the justs the optical parameters in the initial virt d the cycle is repeated. The whole process is d-forth **Bebased** the simulator and the optimised of the simulator and the sim ing tfersetation tool a convergence 15 observed

XLUMINA's workflow

an initial the hard- formance	(RS, VRS) and tio and XLUM pre-compiled (an Intel CPU	d Chirpe arXiv IINA. Times for jitted function Xeon Gold 61	2310. or All ns. Th 30 and
mages Al disc	overy tool for SF	R microscopy.	
he objec- omputed.		RS	CZ'
optimioptics : Jual setaxpens	simDulatorcthe mo	st computationa timiz a ti 91 loop!	ally 1.9 0.8
s a back-			
mizer, re-		RS	CZ'
	<i>Diffractio</i> XLUMINA	/ 0.063	/ 0.02
	When it co be either dire (surrogate m	omes to the rect (gradient- odels or deep	natur -baseo 5 gen

FIG. 1. Workflow of XLUMINA, demonstrating the integrated feedback between the AI discovery tool and the optics simulator.

Carla Rodríguez

arXiv:2310.08408

When it comes to the natur be either direct (gradient-base Numerical vs Auto (surrogate models or deep gen ational autocence Querna, (PU)). I gradient-basediffstrategy, where parameters are adjusted itera scenadieine eivan. times inchose t at schamin Avergeupeto ime of t 5 of hagnitude fasterthan available openically between the string takes approx tive moment based, (AD. stochastic-gradient-descent (SC is post of the open-source SciPy ates on the CPU, ADAM is inte brary and runs in both CPU an of the JAX's built-in autodiff Diffractio python module for diffraction and interference optics (2019) Of UNE IOSS JUNCTION, at COMPUTE

Large-scale discovery framework

Optics discovery is a discretecontinuous problem: configuring the optical network topology + settings of the optical elements (e.g., phase masks)

Carla Rodríguez

carla.rodriguez@mpl.mpg.de

We translate the hybrid discretecontinuous optimization into a purely continuous optimization

Large-scale discovery framework

Computational ansatz:

Carla Rodríguez

Parameters are **continuous** (e.g., phases, distances, beam splitter reflection/transmittance)

carla.rodriguez@mpl.mpg.de

Benchmarks

Rediscovery of **2 foundational experiments** covering different areas in optics:

1. Polarization-based beam shaping as used in STED microscopy [Hell and Wichmann, 1994]

Carla Rodríguez

2. Sharper focus for a radially polarized light beam [Dorn, Quabis and Leuchs, 2004]

Rediscovery through exploration

Ansatz:

Carla Rodríguez

Intensity pro

Rediscovery through exploration: *scaling*

Carla Rodríguez

arXiv:2310.08408

Rediscovery through exploration: scaling the larger focus

Pure topological discovery for Dorn, Quabis and Leuchs (2003)

Carla Rodríguez

arXiv:2310.08408

Discovery of a new experimental blueprint

Ansatz:

Carla Rodríguez

carla.rodriguez@mpl.mpg.de

arXiv:2310.08408

Discovery of a new experimental blueprint

Discovered optical layout

0.5 0.0 Lateral position (m)

Discovered phase masks

sSLM in (1)

0.5

1.

Total intensity profile at focal plane

1.0

carla.rodriguez@mpl.mpg.de

Thank you!

The team

MAX PLANCK INSTITUTE FOR THE SCIENCE OF LIGHT

