
3. The cosmic graph structure is critical for mapping dark matter from galaxies!

Predicting dark matter halo masses from 
simulated galaxy images and environments

2. Method: Comparing Scalar methods, CNNs, and GNNs

1. Introduction

4. Summary and discussion

The CNN performs better than the morphological baseline model in 
terms of outlier-insensitive metrics such as the MAE and NMAD. The 
GNN learns far more environmental information than is encoded in 
the simple overdensity parameter Δg, leading to far lower prediction 
errors. The CNN+GNN model achieves the best performance metrics 
across the board, and can benefit from even more training.

We also consider deep learning 
methods: (a) we train a 
convolutional neural network 
(CNN) that learns morphological 
information directly from synthetic 
galaxy image cutouts, and (b), we 
train a graph neural network 
(GNN) that learns environmental 
information directly from galaxy 
point clouds. Finally, we combine 
the CNN and GNN into a joint 
model that encodes information 
from both the surroundings and 
appearances of galaxies to predict 
their dark matter content.
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Galaxies are theorized to form 
inside and co-evolve with dark 
matter halos. The close 
relationship between galaxies 
and their halos has led to a tight 
relationship between galaxy 
stellar mass M

★
 and dark matter 

halo mass Mhalo, which is known 
as the stellar mass–halo mass 
relation (SMHMR). The SMHMR 
can be calibrated by galaxy and 
halo properties derived from 
cosmological hydrodynamic 
simulations, or from other 

approaches such as semi- analytic 
models or empirical models [1].

However, it is likely that Mhalo 
depends on galaxy properties 
other than M

★
. We present an 

exploration of how Mhalo might be 
predicted from not just the stellar 
mass, but also galaxy morphology 
and the spatial distributions of 
galaxies (i.e., environment). Using a 
galaxy sample from the Illustris 
TNG50 cosmological simulation[2], 

we test whether galaxy morphology 
and large-scale environment 
contain information that can 
improve (lower) the scatter in the 
SMHMR. 

We train simple machine learning 
(ML) models such as random forests 
to predict Mhalo from M

★
. We also 

evaluate the level of improvement 
in predicting Mhalo after including 
galaxy morphology and galaxy 
environmental overdensity as ML 
model features.

The GNN and GNN+CNN models perform 
best. These GNNs are trained using cosmic 
graphs connected by a 3 Mpc linking length, 
suggesting that galaxy environment is 
particularly important for predicting galaxies’ 
halo masses. Surprisingly, we find that the 
CNN-only model results in a poor RMSE and 
suffers from numerous outliers (which are 
visually apparent in the figure above). Due to 
the small size of our dataset, we suspect that 
the CNN is undertrained. Additionally, the 
small test set may not represent the full 
simulation volume.

We caution that our models may have 
learned the specific characteristics of the 
TNG50 simulation, and may not generalize 
well to other data. If we seek to robustly 
apply ML predictions outside of the TNG 
data set, we should employ techniques such 
as domain adaptation [6] or train on 
multiple simulations that vary astrophysical 
or cosmological parameters [7].
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Image showing train-test split and justification

We used simulated galaxy data 
from the z = 0 snapshot from 
TNG50, the highest resolution 
hydrodynamical simulation in the 
IllustrisTNG Project. Our 
selection of M

★
 > 109.5 Msun 

galaxies limits the sample size to 
N = 1,666. We download 
SKIRT-processed galaxy images 
in three optical-wavelength 
bands, and postprocess them to 
imitate Pan-STARRS survey 
imaging [3].

compute overdensity by counting 
the number of other galaxies 
within 3 Mpc.

The morphological baseline is 
compared to the CNN using 
galaxy images. The GNN, based 
on prior work [4,5], uses stellar 
mass and positions to compare 
with the overdensity baseline. A 
combined CNN+GNN is 
compared with the combined 
baseline model.

The data is split into subsets 
with 6 Mpc separation to ensure 
that the GNN is unable to learn 
information from the test set.
Our baseline methods use 
random forests with a variety of 
scalar features, including stellar 
mass (M

★
), petrosian radius (rpet), 

smoothness (S), asymmetry (A), 
and overdensity (Δg). Here we 


