

SRViT: Vision Transformers for Estimating Radar Reflectivity from Satellite Observations at Scale

Jason Stock ¹ Kyle Hilburn ² Imme Ebert-Uphoff ^{2,3} Charles Anderson ¹

¹ CS, Colorado State University $\frac{2}{3}$ Cooperative Institute for Research in the Atmosphere $\frac{3}{3}$ ECE, Colorado State University

Overview

Experimental Results

ICML 2024 ML4ESM Workshop — stock@colostate.edu | cs.colostate.edu/~stock

Motivation: (a) radar is useful to issue warnings and integrate into numerical weather prediction models; but (b) is limited to sparse ground stations; and (c) convolutional approaches can have narrow receptive fields and blurry output.

Spatial Coverage: follows a 3 km HRRR mass grid, 768 x 1536-pixel images. **Temporal Range**: restricted to the warm season (i.e., Apr-Sep) for years 2018-2022, sampled on 6h periods with a 15 min refresh (96 samples/day).

SRViT: transformer for image-to-image translation, reconstructing patches with $\boldsymbol{\phi}: \mathbf{X}^l \to \mathbf{X}^{l+1} \in \mathbb{R}^{n \times d}$ for $l = 1...L$ followed by a linear decoder and CNN.

Question: will a deterministic, transformer-based network that contextualizes synoptic observations over the United States outperform a convolutional model?

Dataset Details

Input Data: GOES-16 Advanced Baseline Imager (ABI) (Level-L1b; infrared channels 7 / 9 / 13) and Geostationary Lightning Mapper (GLM) observations. **Target Data**: Multi-Radar Multi-Sensor (MRMS) composite reflectivity.

Weighted loss: balance the rare, high radar reflectivity values with the small, common values with $\mathscr{L}_e = \frac{1}{m} \sum_{i=1}^m \exp(w_0 t_i^{w_1}) \cdot (y_i - t_i)^2$, trained end-to-end. **Comparisons**: evaluate against a fully-convolutional network and Base-ViT.

Methodology $(* \rightarrow \lbrack$

Guiding Domain Experts

Token (Re)Distribution: explains the redistribution of input tokens $\mathbf{X} \in \mathbb{R}^{n \times d}$,

$$
\mathbf{g}_i = 1 \cdot \frac{\partial \mathbf{z}_i}{\partial \mathbf{X}} = \sum_{k=1}^d \frac{\partial (\mathbf{z}_i)_k}{\partial \mathbf{X}} \in \mathbb{R}^{n \times d}
$$

② construct the matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ with a reducing function $f \colon \mathbb{R}^d \to \mathbb{R}$

$$
\mathbf{U} = \left[f(\mathbf{g}_1), f(\mathbf{g}_2), \dots, f(\mathbf{g}_n) \right]^\top
$$

 \bf{C} visualize a token from the mean over the network, $\bar{\bf U} = \frac{1}{L}\sum_{l=1}^L {\bf U}^{(l)}$

Categorical: probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) at varying composite reflectivity thresholds

as a result of self-attention, to the value of an intermediate token $\textbf{z}_1, ..., \textbf{z}_n \in \mathbb{R}^d$

 $\bf{\textcircled{1}}$ compute the vector-Jacobian product for each intermediate token \mathbf{z}_i

Improves low- and mid-value estimates of reflectivity, < 40 dBZ

A transformer to estimate high-resolution (3 km) radar reflectivity fields from geostationary satellite imagery, accurately capturing the complex atmospheric phenomena both locally and across larger domains.

Introduction