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Exploiting ontologies to teach Large Language Models
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The ontological knowledge infusion approach

Which Large Language Model architecture do we target to infuse ontological knowledge?
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Which fine-tuning framework is exploited to support ontological knowledge infusion?
Contrastive learning framework
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TextA.1: A car is a four-wheeled road vehicle.
Text A.2: A car is a mean of transport moving on
wheels.

The ontological knowledge infusion approach

Which fine-tuning framework is exploited to support ontological knowledge infusion? (cont.)

Contrastive training objective: [igl{el\[®4= Text similarity matrix
- A.2 B.2 C.2 D.2

Text A.1, Text A.2

Text B.1, Text B.2

Text C.1, Text C.2
Text D.1, Text D.2 - : ,
= | sim: similarity function among text embeddings ]
Both texts of each pair Y
share the same meaning ¥
COMPUTATION OF CATEGORICAL CROSS-ENTROPY LOSS
Predicted probability distribution Expected probability distribution
softmax (! sima1.A2) | simA1,82) | simA1,C2) | sim(r.1,D.2) 1) : 0 0 0
softmax (! sim@.1,A2) | sim@1,82) | sim(.1,C2) | sim@.1,0.2) 1) 0 1 0 0
softmax(: sim(C.1,A.2) | sim(C.1,B.2) | sim(C.1,C.2) | sim(C.1,D.2) l) 0 0 1 0
softmax (! sim@.1,A2) | simD.1,8.2) | sim(D1,C2) | sim(D.1,0.2 i ) 0 0 0 1




The ontological knowledge infusion approach

Which fine-tuning framework is exploited to support ontological knowledge infusion? (cont.)

Contrastive training objective: @igi{e]\ &= vith

(hard-)negative texts

Both texts of each pair
share the same meaning

ENCODER

Text A.1, Text A.2 |[H Text A.3n B
Text B.1, Text B.2 [+ Text B.3n
Text C.1, Text C.2 [+ Text C.3n
Text D.1, Text D.2 [+ Text D.3n _
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TextA.1: A car is a four-wheeled road vehicle.
Text A.2: A car is a mean of transport moving on

wheels.

Text A.3n: Two over six wheels of that bus were

damaged because of the accident with a car.

Text similarity matrix
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sim: similarity function among text embeddings
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COMPUTATION OF CATEGORICAL CROSS-ENTROPY LOSS

Predicted probability distribution

Expected probability distribution

softmax ([T | T | SmAT [ s | A | s | s | A T ol ol ol ol o1
sorenax(E T [ [ [ [en [ [ p Lo [ [o[e[e e T
softmax(| 5" [ 25" [ "2 [ [y [ [ [msr D [o o [+ [oJoo]e
softmax (| 7B | Ao | wme [ e | smer [ wmoi [wer [y [0 [ o [ o | 1] o | o | o




The ontological knowledge infusion approach
STEP 1: Choosing the source ontology and the target embedding-Large Language Model
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The ontological knowledge infusion approach

STEP 2: Generating synthetic definitions of concepts

ﬂcar is a four-wheeled

road vehicle that...

A car is a vehicle
moving on wheels that...

Prompting powerful generative LLM |

Could you provide a single sentence
with the definition of a car?

\4

A car 1s a road vehicle
designed for the

\\\\; transportation of...

machine

coach |

/
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The ontological knowledge infusion approach
STEP 3: Selecting positive and negative pairs of concept definitions, driven by the ontology

POSITIVE PAIR of semantically related texts HARD-NEGATIVE PAIR of texts

h n * h || »

Parking is the action of

I A machine is a * O
- four-wheeled |
1 fcar \ > road vehicle 1 I moving a car... 4_'
. that... - I !
l "
A car 1s a - [machlne] I , . ; led ;
four-wheeled - A car is a four-wheeled roa
road vehicle —»> - i | vehicle that...
that... Sol A coach 1is a I : 8
coach four-wheeled : :
T \ [ ]) > road vehicle € I A land vehicle is a self-
|

propelled land conveyance...

: that...
I

B s s >

Do not pair definitions
of ancestor or descendant concepts
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The ontological knowledge infusion approach
STEP 4: Fine-tuning the embedding-Large Language Model by contrastive representation learning

| PosITIVEPAR | | HARD-NEGATIVEPAR
.;_ A car is a four-wheeled road... A coach is a four-wheeled road... Parking is the action of moving a car...

Ontological knowledge infusion
by contrastive representation learning

EMBEDDING

INfONCE loss

EMBEDDING

Implementation available on OGitHUb at https://github.com/igvianlp/lim-onto-infuse/ =|QVIA



https://github.com/iqvianlp/llm-onto-infuse/

EVALUATION
Do embedding-Large Language Models better understand diseases,

after infusing the MONDO disease ontology?

r

: d |

April-2024 version :
! @) m O n O - 24,201 disease-related concepts |
! Disease Ontology —> ~75Kk exact synonyms |

| - definitions of ~70% of concepts
- 36,459 is-a relations

Ontological knowledge infusion
by contrastive representation learning

EMBEDDING

EMBEDDING
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EVALUATION
Do embedding-Large Language Models better understand diseases,

after infusing the MONDO disease ontology?

PubMedBERT: 110M parameters, pre-trained from scratch using Pre-trained
abstracts from PubMed and full-text articles from with
PubMedCentral with masked language modelling and next Soecial standard
- pecialized objectives
sentence prediction | tothe
biomedical -
SapBERT: 110M parameters, fine-tuned in a contrastive learning domain
framework to increase the similarity of pairs of synonyms of
biomedical concepts, from the UMLS meta-thesaurus
] GTEbase: 110M parameters, fine-tuned by means of a two-
stages contrastive learning framework: pre-training text pairs by Eine'tuned
weak supervision, a subsequent training on higher-quality Not — Czntrastive
publicly available on annotated datasets specialized objectives
— . b t0 a specific
¥, Hugging Face GIST: 100M parameters, one of the best performing small Zgiﬂtﬁdge
embedding-LLMs in the MTEB leader-board, fine-tuned by a
contrastive objective relying on an dynamic selection strategy to
identify in-batch negative samples



EVALUATION
Do embedding-Large Language Models better understand diseases,

after infusing the MONDO disease ontology?

TASK: | Sentence Similarity

SENTENCE 1 S
® The up-regulation of miR-146a medlum-slr;nlarlty
E—/ -» Was also detected in cervical mo. e_

‘ cancer tissues. prediction
h'gh'sgc';a”ty i SENTENCE 2
g The expression of miR-146a : L
Standard » high-similarity
. -» has been found to be up-
evaluation regulated in cervical cancer model
g - prediction

DATASETS: BIOSSES: 100 sentence pairs from biomedical publications

SEMEVAL: about 12k pairs of sentences dealing with several distinct knowledge domains
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EVALUATION
Do embedding-Large Language Models better understand diseases,

after infusing the MONDO disease ontology?

Embedding-Large Language BIOSSES STS 12 STS 13 STS 14 STS 15 STS 16
Model Al Dis Al Dis Al Dis Al Dis Al Dis Al Dis
SRR ORIGINAL 53.74 | 69.80 | 25.99 | 46.34 | 28.09 | 16.21 | 25.80 | 00.30 | 37.33 | 21.31 | 47.99 | 80.33
ONTOLOGY-AWARE | 71.23 | 77.41 | 41.90 | 47.83 | 42.19 | 18.30 | 37.94 | 12.32 | 49.17 | 23.55 | 58.37 | 72.78
SapBERT ORIGINAL 81.86 | 83.21 | 70.89 | 68.84 | 79.23 | 35.73 | 70.37 | 47.64 | 77.85 | 56.99 | 76.71 | 89.73
ONTOLOGY-AWARE | 85.45 | 84.79 | 72.31 | 79.99 | 80.66 | 46.04 | 72.44 | 52.07 | 79.79 | 64.05 | 77.58 | 92.86
e ORIGINAL 87.26 | 90.30 | 75.70 | 69.85 | 85.72 | 87.91 | 81.51 | 76.66 | 88.81 | 87.40 | 83.82 | 93.60
ONTOLOGY-AWARE | 87.40 | 89.62 | 76.44 | 70.17 | 86.12 | 88.15 | 81.94 | 77.69 | 88.86 | 88.18 | 84.21 | 94.71
— ORIGINAL 87.96 | 89.66 | 76.15 | 63.88 | 87.85 | 88.64 | 83.39 | 74.52 | 89.43 | 85.75 | 85.35 | 93.78
ONTOLOGY-AWARE | 88.86 | 92.05 | 76.69 | 65.94 | 87.99 | 89.26 | 83.64 | 75.45 | 89.56 | 85.42 | 85.69 | 93.78
" i n : )
BIOMEDICAL NON-BIOMEDICAL
All: all pairs of sentences SENTENCE SIMILARITY SENTENCE SIMILARITY
considered (in-domain) (out-of-domain)

Dis: pairs of sentences
mentioning diseases =IQVIA
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To be presented at machine Learning
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https://arxiv.org/abs/2405.20527

Key learnings

Ontologies are extensively used to organize and harmonize information across distinct domains
and applications

Knowledge resources like ontologies can be effectively exploited to both create and effectively
exploit high-quality textual data useful to train Large Language Models, in data-hungry scenarios

Ontologies can be effectively used to prompt (powerful) generative Large Language Models to
drive the focused creation of additional textual data to support Large Language Models training

Contrastive learning constitutes an effective technique to enrich the latent knowledge embedded inside a
Large Language Model by relying on the explicitly knowledge formalized by an ontology

Tools exploited

: Sentence Transformers @ OpenAI

.SEERT.HE’[ * Python library useful to access, use, and train text and image

embgdding moglels , _ , OpenAl GPT-3.5-Turbo
* Provide customizable classis useful to train (batching, loss +  Prompted to generate synthetic
function, etc.) and evaluate sentence embeddings definitions of concepts from
oo Hugging Face ontologies

* Used as arepository of embedding Large Language Models
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Next steps

* Evaluate bigger embedding-Large Language Models, eventually derived from generative
models (e.g. by LLM2Vec)

 Consider distinct / multiple ontologies to quantify the effectiveness of ontological knowledge
infusion under distinct scenarios

* Explore alternative strategies for ontology-driven training data generation

 Extend evaluation to additional tasks, besides sentence similarity

...and extend the proposed ontological knowledge infusion approach to generative Large
Language Models

Ontological

knowledge
# infusion
X

DECODER

=|QVIA



= |QVIA

Thanks for your attention
Any questions?
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