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via social interactions

Biological data is scarce 
and expensive

Training objective Self-supervised;
Masked modelling

Only limited generalizability of 
mask modelling training 

demonstrated
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PRE-TRAINING DATA

Beaini, Dominique, et al. "Towards foundational models for molecular learning on large-scale multi-task datasets." arXiv preprint arXiv:2310.04292 (2023).



MINIMOL PRE-TRAINING



MINIMOL FOR DOWNSTREAM TASKS



MINIMOL ON TDC ADMET



PRE-TRAINING → DOWNSTREAM
KNOWLEDGE TRANSFER 



MINIMOL COMPARISON 

MiniMol



CONCLUSIONS
• MiniMol is a novel parameter-efficient foundation 

model for molecular learning. It was pre-trained on 
over 3,300 biological and quantum tasks on both 
graph- and node-level features.

• MiniMol outperforms the previous state-of-the-art 
foundation model, MolE (Méndez-Lucio et al., 2022), 
on TDC ADMET, with only 10M parameters, 10× fewer 
than MolE.

• Training task-specific MLPs on MiniMol-generated 
fingerprints is an efficient way to transfer the 
knowledge.

• The correlation analysis gives insight into how to 
utilize pre-training datasets for downstream biological 
tasks. 



Molecular fingerprinting with MiniMol
https://github.com/graphcore-research/minimol/

TRY IT YOURSELF!


