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Reinforcement Learning Problem

𝑆!"#

𝐴!

Agent-Environment Interface.

▶ Interactive Experience:

A0, S1, A1, S2, . . . , At, St+1, . . .

Environment M = (S ,A, P)

▶ State St+1 ∼ P (· | St, At) for t = 0, 1, . . ..

Agent(S ,A, r,Dt)→ πt max long-term rewards

▶ Reward Rt+1 = r (St, At, St+1) preference

▶ Data Dt = Dt−1 ∪ {At−1, St} accumulated.

▶ Policy πt = Agent(S ,A, r,Dt).

▶ Action At ∼ πt(· | St);

▶ Objective πagent = (π0, π1, . . .) to maximize

E[
T−1

∑
t=0

Rt+1 | πagent, M] . (1)
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Challenges for Deploying RL in Real-world

𝑆!"#

𝐴!

Agent-Environment Interface.

▶ Interactive Experience:

A0, S1, A1, S2, . . . , At, St+1, . . .︸ ︷︷ ︸
D

Complex Environment:
▶ Large state space: language, vision & audios.
|S| ≈ 10100.

▶ Data accumulates as interacting. |D| ↑

Resource Constraints for Agent:
▶ Bounded Per-step Computation & Memory

▶ Limited Data Collection Budgets
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Example: Human-AI Collaboration in Automated Content Moderation

Context(t)

Data

Auto
Remove

Human
Review Label(t)

AI Moderation System

The Human-AI agile collaboration pipeline for risk oversight in an online production environment

▶ Challenge 1: Natural language input in post context. "Cold start" problem.
Large foundation models (GPTs) are used in Moderation system.

▶ Challenge 2: Real-time safety-critical decision-making.
Huge amount of posts are generated every second. Filter out harmful post, aligning human value.

▶ Challenge 3: Limited human reviewer
can only provide feedback and moderate on a small portion of posts.
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Research Question

Can we design scalable and data-efficient RL algorithms under resource constraints?

▶ Scalability: Bounded per-step computation and memory complexity even when large foundation
model (e.g., GPT) is involved in the online decision-making process.

▶ Data-efficiency: Handle limited data collection budgets. Sublinear regret.

Motivation: RL under Resource Constraints 6 / 52



Outline

Motivation: RL under Resource Constraints

Existing solution and their limitations
Our Contributions

HyperAgent: Scalable Uncertainty and Exploration
Theoretical insights with tabular representation
Reduce sequential posterior approx. to sequential random projection

Existing solution and their limitations 7 / 52



Development of RL Algorithms: A History of "Scale up!"

Computation First

50s-60s

R. Bellman,
R. A. Howard, 
D. Blackwell
Dynamic Programming
(Markov) Decision Processes

R.S. Sutton & A. Barto
C. J.C.H. Watkins 
D. Bertsekas & J. Tsitsiklis
Temporal Difference, Q-Learning
Approximate (Neuro) DPs
Parallel and Distributed Computation

70s-90s 2010s --

DeepMind
OpenAI
Etc.
Deep RL (Advances in Algorithms and Computations)
AlphaGo & GPTs (Foundation Models)

Scale up!

▶ Per-step O(poly(|S|)) ⇒ Function Approximation (FA), e.g. Neural Networks; (70s – 90s)

▶ Per-step O(poly(|D|)) ⇒ Incremental Update with SGD, Replay Buffer and/or Target Network.

▶ FA + Incremental Update ⇒ Bounded Õ(1) Per-step Complexity ⇒ Scalable algorithm. (10s –)
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Practical Advancements for “Efficient” Deep RL

Algorithm Components

DDQN (16) Incremental SGD with experience replay (finite buffer) and target network
Rainbow (18) (DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.

BBF (23)
(DDQN) + Prioritized replay, Dueling networks, Distributional RL,
Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.

Table: Components in STOA algorithms, e.g. DDQN [VHGS16], Rainbow [HMVH+18], BBF [SCC+23].

▶ ✓ Scalable: e.g. DDQN use incremental SGD with experience replay and target network.

▶ ✗ Deployment inefficient: Complicated components and many heuristics. Hard to tune.

▶ ✗ Data inefficient: e.g. BBF use ϵ-greedy exploration strategy which suffer linear regret in some
environment, provably [Kak03, Str07, OVRRW19, DMM+22]. In practice, deep RL data hungury .
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Principled Approaches for Data Efficiency

Goal: Sequential decision-making under uncertainty with sublinear regret.

Before 90s

R.A. Fisher, William R. Thompson (30s)
T. L. Lai and H. Robbins (80s)
Sequential design and allocations (MAB)

2000 -- 2014 --

E3/PSRL/UCRL …
Tabular RL

Eluder dimension/Information Ratio
Bellman Rank/Bilinear Structure
Decoupling coefficient/DEC/GEC …
Structural assumption and Algorithms for
RL with function approximation

Data First
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Data Efficient Exploration: Uncertainty Estimation Matters

Posterior Sampling Reinforcement Learning (PSRL): data-efficient exploration strategy

▶ Require: Prior distribution P(M ∈ ·) for underlying model M.
▶ For each episode ℓ, denote tℓ the beginning time step

– Sample M̂ℓ ∼ P
(

M ∈ · | Dtℓ
)
.

– Return the optimal policy πℓ = πM̂ℓ under M̂ℓ.

▶ Require conjugacy for tractable posterior update (uncertainty estimation).

▶ Only feasible in simple environments:

– Tabular MDP with dirichlet prior [Str00, OVR17] Õ(H2
√

SAK) regret sublinear in K episodes.

– Linear-Gaussian bandit [RVR16, RVRK+18] O(d
√

T log A) regret subliear in T time steps.
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Data Efficient Exploration needs Scalable Uncertainty Estimation

✗ Intractable Computation in Posterior Sampling:
▶ Model-based: No conjugacy for exact Bayesian inference for posterior over transition models.

– [LL24] (AISTATS): First prior-dependent bound under FA and improved prior-free bound in the
context of linear mixture MDPs.

▶ Model-free: Beyond conjugacy, sample from intricate distribution over value
functions [Zha22, DMZZ21, ZXZ+22]

✗ Unbounded Per-step Complexity poly(|D|) in Approximate Posterior Sampling:

▶ Store entire history and retrain for each episode, e.g. RLSVI [OVRRW19], LSVI-PHE [ICN+21].

▶ Langevin Monte-Carlo (LMC) based methods [XZM+22, ILX+24]

▶ Same issues for OFU: (1) ✗ Intractability [JKA+17, JLM21, DKL+21, FKQR21, LLX+23];
(2) ✗ Unbounded resource demands as data accumulates [WSY20, AJZ23].
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Ensemble Sampling for Approximate Posterior Sampling

▶ Ensemble Sampling (ES): approximate the posterior distribution by uniformly sampling from a set
of ensemble models. E.g., BootstrapDQN [OBPVR16], Ensemble+ [OAC18, OVRRW19].

▶ ✓ Each ensemble perform incremental update, no retraining.

▶ ✗ Computationally expensive in practice: say, update > 100 neural networks for each time step.

▶ ✗ No rigorous understanding in terms of statistical and computational complexity.
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Theory! Data First Scale up! Computation First

Diverge
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Our HyperAgent [LXHL24] aims to ...

Theory! Data First Scale up! Computation First

Bridging
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Preview of Contributions - For Practitioners

Algorithm Components

DDQN (16) Incremental SGD with experience replay (finite buffer) and target network
Rainbow (18) (DDQN) + Prioritized replay, Dueling networks, Distributional RL, Noisy Nets.

BBF (23)
(DDQN) + Prioritized replay, Dueling networks, Distributional RL,
Self-Prediction, Harder resets, Larger network, Annealing hyper-parameters.

HyperAgent (DDQN) + Hypermodel

Table: Techniques used in different algorithms, e.g. DDQN [VHGS16], Rainbow [HMVH+18], BBF [SCC+23]
and our HyperAgent.

▶ ✓ Simple: Only one additional component, hypermodel, compatiable with all feedforward DNN.
⇒ Easy to deploy empirically.

▶ ✓ Scalable: Incremental SGD under DNN function approximation, same as DDQN;
⇒ bounded per-step computation.
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Preview of Contributions - For Practitioners
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Rainbow

EfficientZero BBF
HyperAgentHyperAgent

How much data and parameters to achieve Human-level
performance (1 IQM) in Atari suite?

▶ ✓ Data efficient: only 15% data consumption
of DDQN[VHGS16] by DeepMind. (1.5M
interactions)

▶ ✓ Computation efficient: only 5% model
parameters of BBF[SCC+23] by DeepMind.

▶ Ensemble+ [OAC18, OVRRW19] achieves a
mere 0.22 IQM score under 1.5M interactions
but necessitates double the parameters of
HyperAgent.
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HyperAgent: Data efficiency in DeepSea benchmarks (Deep Exploration)
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Comparison with Ensemble+ [OAC18, OVRRW19], HyperDQN [LLZ+22], ENN-DQN[OWA+23b].

▶ ✓ Scalable as size N ↑. State representation: one-hot vector in high-dimension RN .
▶ ✓ Data efficient: HyperAgent the only and first achieving optimal episode complexity Θ(N).
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HyperAgent for hardest exploration in Atari

0 0.5M 1.0M 1.5M 2M
0

500

1000

1500

2000

2500

Ep
iso

de
 R

et
ur

n

Alien

0 0.5M 1.0M 1.5M 2M
0

10

20

30

Freeway

0 0.5M 1.0M 1.5M 2M
0

200

400

600

Gravitar

0 0.5M 1.0M 1.5M 2M
0

2500

5000

7500

10000

12500

Hero

0 0.5M 1.0M 1.5M 2M
Num of Steps

1250

1000

750

500

250

0

Ep
iso

de
 R

et
ur

n

Pitfall

0 0.5M 1.0M 1.5M 2M
Num of Steps

0

2500

5000

7500

10000

12500

Qbert

0 0.5M 1.0M 1.5M 2M
Num of Steps

0

1000

2000

3000

Solaris

0 0.5M 1.0M 1.5M 2M
Num of Steps

0

100

200

300

400
Venture

Variational LangevinMC Ensemble+ Rainbow HyperAgent

Comparison on approximate posterior sampling methods: Variational approximation (SANE [AL21]), Langevin
Monte-Carlo (AdamLMCDQN [ILX+24]) and Ensemble+ [OAC18, OVRRW19]
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HyperAgent for Online Automated Content Moderation
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The human-AI collaboration pipeline for online automated
content moderation, focusing on hate speech detection.

▶ 10x labeling effort reduction,

▶ Higher detection accuracy.

▶ Pretrained foundation model helps:
augment pretrained GPT-2 backbone
with hypermodel.
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Preview of Contributions - For Theoretists (RL)

Practice in Deep RL Theory in Tabular RL

Algorithm Tractable Incremental Efficient Regret Per-step Computation

PSRL ✗ ✗ ✗ Õ(H2
√

SAK) O(S2 A)

RLSVI ✓ ✗ ✗ Õ(H2
√

SAK) O(S2 A)

Ensemble+ ✓ ✓ ● N/A N/A
HyperAgent ✓ ✓ ✓ Õ(H2

√
SAK) Õ(log(K)SA + S2 A)

▶ HyperAgent not only demonstrates superior empirical performance in deep RL benchmarks

▶ but also achieves theoretical milestones, i.e., the first method to achieve Õ(log K) per-step
computation & near-optimal regret in tabular K-episodic RL among practically scalable algorithms.
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Preview of Contributions - For Theoretists (Contextual Bandit)

Decision Sets Invariant & Compact Variant & Compact Invariant & Finite Variant & Finite
Lower Bound Ω(d

√
T) Ω(d

√
T log T) Ω(

√
dT log |A|) Ω(

√
dT log |A| log T)

TS O(d
3
2
√

T log T) O(d
3
2
√

T log T) O(d
√

T log |A| log T) O(d
√

T log |A| log T)
ES[Qin] N/A N/A O(

√
dT log |A| log(|A|T/d)) N/A

LMC[Xu] O((d log T)
3
2
√

T) O((d log T)
3
2
√

T) N/A N/A
ES[Janz] O((d log T)

5
2
√

T) O((d log T)
5
2
√

T) N/A N/A
(Ours) O(d

3
2
√

T(log T)
3
2 ) O(d

3
2
√

T(log T)
3
2 ) O(d

√
T log |A| log T) O(d

√
T log |A| log T)

Table: Regret lower and upper bounds under various decision set setups in linear contextual bandit. The
per-step computation complexity is O(d2 + d|A|T) for ES [QWLVR22], O(d2T) for LMC [XZM+22], O(d3 log T)
for ES [JLS24], and O(d3 log T) for our HyperAgent.

▶ Logarithmic per-step computation complexity in total time periods T.

▶ HyperAgent matches exact TS, closing a gap in theory for scalable exploration.
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Preview of Contributions - For Practitioners & Theoretists

Algorithmic Mechanism
▶ Value-based approximate posterior sampling via hypermodel and index sampling schemes.

▶ ⇒ Near-optimal regret bound ⇒ Data-efficient Exploration

⇑

Key Lemma
▶ Incremental approximation of posteriors over value function without conjugacy.

▶ ⇒ Logarithmic per-step computation complexity ⇒ Scalable Uncertainty Estimation.

⇑

▶ Fundamental Tools for dynamic (non-i.i.d.) data: First Probability Tool for Sequential Random
Projection – a non-trivial martingale extension of Johnson-Lindenstrauss (JL). [Li24a]

▶ Fundamental Tools for static data: Simple, Unified JL analysis that covers existing and new JL
construction that traditional analysis cannot handle. [Li24b]
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HyperAgent: Introducing Hypermodel

▶ Hypermodel: ( fθ , Pξ ) s.t.

Index Sampling: fθ(x, ξ ) is an (approximate) posterior predictive sample on data x.
Index sample ξ ∼ Pξ

Paramatric function Reference distribution

▶ [DLI+20, LLZ+22, OWA+23a]

Example: predictive sampling from Linear-Gaussian model

– Suppose θ∗ ∼ N(µ, Σ) where Σ represent the model uncertainty.

– Box-Muller Transform: Pξ = N(0, IM), θ = (A ∈ Rd×M , µ ∈ Rd)

ξ ∼ Pξ ⇒ fθ(x, ξ) := ⟨x, µ + Aξ⟩ ∼ N(x⊤µ, x⊤AA⊤x)

– Uncertain Estimation: Find A s.t. AA⊤ = Σ. ⇒ fθ(x, ξ) ∼ ⟨θ∗, x⟩.
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Ensemble Sampling as Special Case of Hypermodel Index Sampling

Sampling from Linear-Gaussian model N(x⊤µ, x⊤Σx), we could perform

Ensemble Sampling (# of models M)

Pξ = U{e1, . . . , eM} and θ = A = [θ̃1, . . . , θ̃M] ∈ Rd×M, s.t. θ̃m ∼ N(µ, Σ).

ξ ∼ Pξ ⇒ fθ(x, ξ) := ⟨x, Aξ⟩ where Aξ⟩ ∼ U{θ̃1, . . . , θ̃M}

Histogram approximation:

▶ µ̃ = E[Aξ | A] = 1
M ∑M

i=1 θ̃i → µ as M ↑.
▶ Cov[Aξ | A] = 1

M ∑M
i=1(θ̃i − µ̃)(θ̃i − µ̃)⊤ → Σ as M ↑.

▶ Problem: M ↑ leads to unbounded computation.
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HyperAgent: Hypermodel for Feedforward Deep Networks

▶ Base model: DNN ⟨ ϕw(·) , wpredict⟩

Hidden-Layers
𝜙!(⋅)

Last-
LayerInput 𝑥

𝑃𝜉 ∼ Index 𝜉

Feed-forward NN

𝑤"#$%&'((𝜉)Hypermodel

𝑓)(𝑥, 𝜉)

▶ Hypermodel: [LXHL24] chooses fθ(x, ξ) = ⟨ ϕw(x) , wpredict(ξ)⟩ with wpredict(ξ) = Aξ + b

fθ(x, ξ) = ⟨ ϕw(x) , b⟩︸ ︷︷ ︸
‘mean’ µθ(x)

+ ⟨ ϕw(x) , Aξ⟩⟩︸ ︷︷ ︸
‘variance’ σθ(x,ξ)

The degree of uncertainty
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HyperAgent: Hypermodel for Deep RL

▶ Base model for DQN-type value function

fθ(s, a) = ⟨ ϕw(s) , θ(a)⟩

with parameters θ = {w, (θ(a) ∈ Rd) : a ∈ A }
Action-specific parameters for discrete action set A

▶ Hypermodel for randomized value function depends on (s, a) and a random index ξ ∼ Pξ :

fθ(s, a, ξ ) = ⟨ ϕw(s) , A(a)ξ + b(a)︸ ︷︷ ︸
θ(a)(ξ)

⟩

with parameters θ = {w, (A(a) ∈ Rd×M, b(a)) : a ∈ A }.
Action-specific parameters

Random index ξ ∼ Pξ

▶ Tabular representation: ϕw(s) is fixed one-hot vector in R|S| where d = |S|. (Unification!)
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HyperAgent: Seemless Integration to DDQN

Algorithm HyperAgent Framework

1: Input: Initial parameter θinit, hypermodel fθ with reference dist. Pξ and perturbation dist. Pz .

2: Init. θ = θ− = θinit, train step j = 0 and buffer D
3: for each episode k = 1, 2, . . . do
4: Sample index mapping ξk ∼ Pξ

5: Set t = 0 and Observe Sk,0 ∼ ρ
6: repeat
7: Select Ak,t = arg maxa∈A fθ(Sk,t, a, ξk(Sk,t) )

8: Observe Sk,t+1 from environment and Rk,t+1 = r(Sk,t, Ak,t, Sk,t+1).

9: Sample perturbation random vector zk,t+1 ∼ Pz

10: D.add((Sk,t, Ak,t, Rk,t+1, Sk,t+1, zk,t+1 ))

11: Increment step counter t← t + 1
12: θ, θ−, j← update(D, θ, θ−, ξ− = ξk , t, j)
13: until Sk,t = sterminal
14: end for
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HyperAgent: Objective for Generic Hypermodel ( fθ, Pξ)

▶ For a transition tuple d = (s, a, r, s′, z ) ∈ D and given index ξ, the temporal difference (TD) error:

ℓγ,σ( θ ; θ− , ξ− , ξ , d) =
(

fθ(s, a, ξ )− (r + σ ξ ⊤ z + γ max
a′∈A

fθ− (s
′, a′, ξ−(s′) ))

)2
(2)

main parameters, optimization variables

target parameters, fixed here and updated in an outer loop

control the std of injected noise

discounted factor

perturbation random vector

▶ ξ− : the target index mapping s.t. ξ−(s) one-to-one maps each state s ∈ S to a random vector

from Pξ , all of which are independent with ξ .
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HyperAgent: Objective and Training

▶ Integrate ξ over Equation (2) yields objective Lγ,σ,β where β ⩾ 0 is for the prior regularization

Lγ,σ,β(θ; θ−, ξ−, D) = Eξ∼Pξ
[ ∑
d∈D

1
|D| ℓ

γ,σ(θ; θ−, ξ−, ξ, d)] +
β

|D| ∥θ∥
2 (3)

▶ Optimize main objective Equation (3) using mini-batch SGD (default Adam), i.e., sampled loss

L̃(θ; θ−, ξ−, D̃ ) =
1
|Ξ̃| ∑

ξ∈ Ξ̃

 ∑
d∈ D̃

1
|D̃| ℓ

γ,σ(θ; θ−, ξ−, ξ, d)

+
β

|D| ∥θ∥
2 (4)

a batch of data D̃ sampled from D a batch of indices Ξ̃ sampled from Pξ

▶ Update the main parameters θ in each step according to Equation (4), and updates the target
parameters θ− periodically with less frequency. ⇒ Bounded per-step computation.
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HyperAgent for Contextual Bandits with GPT involved

GPT Backbone 
𝜙!(⋅)

Last-
Layercontext 𝑥

index 𝜁 ∼ 𝑃" Hypermodel

𝑓#(𝑥, 𝜁)predictive sample

▶ Online learning for content moderation with GPT involved can be formulated as a contextual
bandit problem.

▶ HyperAgent can be applied to the problem with GPT as the base model.

▶ Remove the target hypermodel in the HyperAgent framework for contextual bandit.
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Theoretical Understanding via Unified Representation and Algorithm

▶ Tabular representation: ϕw(s) is fixed one-hot vector in R|S| where d = |S|. (Unification!)

▶ Tabular HyperAgent: short notations

fθ(s, a, ξ ) = ⟨ ϕw(s) , A(a)ξ + b(a)⟩

= ⟨(A(a))⊤ϕw(s)︸ ︷︷ ︸
m̃sa

+ (b(a))⊤ϕw(s)︸ ︷︷ ︸
µsa

, ξ⟩

▶ Parameters in k-th episode θk = (µk,sa, m̃k,sa ∈ RM, ∀(s, a) ∈ S ×A).
▶ ϕw(s) fixed mapping, e.g. tabular and linear FA.
▶ ⇒ Equation (3) of HyperAgent permits closed-form solution.

– HyperDQN [LLZ+22] & ENN-DQN[OWA+23b] can not derive closed-form solution.
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Insights from closed-form solution

▶ Incremental update with computation complexity O(M) :

m̃k,sa =

(Nk−1,sa + β) m̃k−1,sa + ∑
t∈ Ek−1,sa

σ zℓ,t+1

( Nk,sa + β)
∈ RM (5)

Visitation counts of (s, a) up to episode k

Perturbation random vector

Set of timesteps encoutering (s, a) in episode k− 1

Lemma 1 (Sequential posterior approximation via incremental update).

For m̃k recursively defined in Equation (5) with z ∼ U (SM−1). For any k ⩾ 1, define the good event of
ε-approximation

Gk,sa(ε) :=
{
∥ m̃k,sa ∥2 ∈

(
(1− ε)

σ2

Nk,sa + β
, (1 + ε)

σ2

Nk,sa + β

)}
.

The joint event ∩(s,a)∈S×A ∩K
k=1 Gk,sa(ε) holds w.p. at least 1− δ if M ≃ ε−2 log(SAHK/δ) .
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Insights from closed-form solution

Stochastic Bellman Operator Fγ
k induced by Equation (3) w. θ = θ

(i+1)
k , θ− = θ

(i)
k iteratively :

f
θ
(i+1)
k ,ξk

= Fγ
k f

θ
(i)
k ,ξk
≈ (rsa + γ⟨Vf

θ
(i)
k ,ξk

, P̂k,sa ⟩) + m̃⊤k,saξk(s) , (6)

where fθ,ξ− (s, a) = fθ(s, a, ξ−(s)) and VQ(s) := maxa Q(s, a), ∀s is the greedy value w.r.t. Q.
Empirical transition “Randomized bonus” ∝

√
1

Nk,sa

i=6 i=5 i=4 i=3 i=2 i=1

s=1

s=2

s=3

s=4

St
at
es

Setup: Nk,(4,↘) = 1. Other (s, a) almost infinite data.
(1) Propagation of uncertainty from later time period to earlier

time period due to iterative applying Fγ
k .

(2) Darker shade indicates higher degree of uncertainty.
(3) Incentivize deep exploration.
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Step 1: Rewrite incremental update on m̃k,sa

▶ Eℓ: the collection of time steps in episode ℓ.

▶ Eℓ,sa: the collection of time steps in episode ℓ encountering state-action pair (s, a).

▶ Define a sequence of indicator variables xℓ,t = 1t∈Eℓ,sa . Note

k−1

∑
ℓ=1

∑
t∈Eℓ

x2
ℓ,t = Nk,sa

▶ Define short notations z0 = z0,sa and x0 =
√

β. Let β = σ2/σ2
0 . Equation (5) now becomes

(Nk,sa + β)

σ
m̃k,sa = x0z0 +

k−1

∑
ℓ=1

∑
t∈Eℓ

xℓ,tzℓ,t+1 (7)

▶ Lemma 1 ⇒ w.h.p. Equation (8) holds for all (s, a) ∈ S ×A and k ∈ [K] simultaneously:

(1− ε)(x2
0 +

k−1

∑
ℓ=1

∑
t∈Eℓ

x2
t,ℓ) ⩽ ∥x0z0 +

k−1

∑
ℓ=1

∑
t∈Eℓ

xℓ,tzℓ,t+1∥2 ⩽ (1 + ε)(x2
0 +

k−1

∑
ℓ=1

∑
t∈Eℓ

x2
ℓ,t) (8)
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Classical JL for random projection

▶ Try to relate Equation (8) to the classical Johnson–Lindenstrauss (JL) lemma:

Consider Π = (z1, . . . , zd) ∈ RM×d, x = (x1, . . . , xd)
⊤ ∈ Rd, then Πx =

d

∑
i=1

xizi

Lemma 2 (Distributional JL lemma [JL84]).

For any 0 < ε, δ ⩽ 1/2 and d ⩾ 1 there exists a distribution Dε,δ on RM×d for M = O
(
ε−2 log(1/δ)

)
such that for any x ∈ Rd

P
Π∼Dε,δ

(
∥Πx∥2

2 /∈
[
(1− ε)∥x∥2

2, (1 + ε)∥x∥2
2

])
< δ

▶ Existing JL analysis based on the assumption: x fixed non-random or
the projection matrix Π is generated independently with the data x, i.e.

Π := (z1, . . . , zd) ⊥⊥ x := (x1, . . . , xd).
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Step 2: Indentify dependence structure

Sequential dependence structure in HyperAgent when interacting with environment is that

▶ Eℓ: the collection of time steps in episode ℓ.

▶ Eℓ,sa: the collection of time steps in episode ℓ

▶ xℓ,t = 1t∈Eℓ,sa is dependent on the environmental and algorithmic randomness in all previous time
steps:

z0, (x1,t′ , z1,t′+1)t′∈E1 , (x2,t′ , z2,t′+1)t′∈E2 , . . . , (xℓ,t′ , zℓ,t′+1)t′<t;

▶ zℓ,t+1 is independent of the environmental and algorithmic randomness in all previous time steps:

z0, (x1,t′ , z1,t′+1)t′∈E1 , (x2,t′ , z2,t′+1)t′∈E2 . . . , (xℓ,t′+1, zℓ,t′+1)t′<t, xℓ,t,
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Difficulty and Novelty in the Mathematical Analysis: No Prior Art

z0

x1

z1

x2

z2

x3

z3

. . .

. . .

xt

zt

xt+1

Time t = 1 Time t = 2 Time t = 3 Time t Time t + 1

Sequential dependence of high-dimensional R.V. due to the adaptive nature of sequential decision-making.

Difficulty: (1) Conditioned on xt, (zs)s<t loss their independence; (2) No characterization on P(zs)s<t |xt
.

⇒ Traditional analysis of random projection cannot handle sequential dependence [Li24a].

First probability tool for sequential random projection. [Li24a]

▶ A non-trivial martingale extension of the Johnson–Lindenstrauss (JL).

▶ Technical novelty: a careful construction of stopped process with non-trivial application of
‘method of mixtures’ in self-normalized martingale.
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Sequential Random Projection

Theorem 1 (Sequential random projection in adaptive processes [Li24a]).

– Let ε ∈ (0, 1) be fixed and (Ft)t⩾0 be a filtration. Let z0 ∈ RM be an F0-measurable random vector
satisfies E[∥z0∥2] = 1 and |∥z0∥2 − 1| ⩽ (ε/2).
– Let (zt)t⩾1 ⊂ RM be a stochastic process adapted to filtration (Ft)t⩾1 such that it is√

c0/M-sub-Gaussian and each zt is unit-norm. – Let (xt)t⩾1 ⊂ R be a stochastic process adapted to
filtration (Ft−1)t⩾1 such that it is cx-bounded. Here, c0 and cx are absolute constants.
– For any fixed x0 ∈ R, if the following condition is satisfied

M ⩾
16c0(1 + ε)

ε2

(
log
(

1
δ

)
+ log

(
1 +

cxT
x2

0

))
,

we have, with probability at least 1− δ

∀t ∈ {0, 1, . . . , T}, (1− ε)(
t

∑
i=0

x2
i ) ⩽ ∥

t

∑
i=0

xizi∥2 ⩽ (1 + ε)(
t

∑
i=0

x2
i ).
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Simple, Efficient, Scalable: Bridging Theory and Practice

Fulfilling
the Promise of RL

HyperAgent
▶ Simple, Efficient and Scalable;

▶ Practically useful for safety-critical decision-making in
Human-AI interplay.

▶ Bridging theory and practice. No prior art.
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