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Setup Y Fine-tuning 3 regimes

Existing empirical and theoretical research: Controlled setup (for accurate Scale-invariant ResNet-18 on CIFAR-10
for optimal results, network training should start experiments with fixed LRs) [1]: Fine-tuning with different FLRs
with a large initial learning rate (LR).  fully scale-invariant networks 9>

 training on the unit sphere
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In this setup, training happens in

What features are learned by one of three regimes depending on LR
neural networks when trained with

different initial LRs? Pre-train with one LR 1 S Pre-trai
(PLR), then fine-tune T T

| with small FLR to PLR

We study feature learning in the controlled | ensure convergence [2] Regime 1: pre-training converges

synthetic example and image classification | FLR * FLR < PLR: no changes
setup and discover that:  FLR > PLR: jump to better optimum

Test accuracy, %
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optimal initial LRs lead to learing a sparse Epoch Regime 2: pre-training noisily stabilizes
set of the most useful features [1]. M. Kodryan et al., Training scale-invariant * 2A: the same optimal quality for all FLRs
¥ smaller initial LRs try to capture all neural networks on the sphere can happen in « 2B: different suboptimal quality

relevant features without specialization three regimes, NeurlPS 2022 when varying FLRs

X larger initial LRs fail to extract useful 2] E. Lobacheva et al., Large Learning Rates Regime 3: pre-training diverges
Improve Generalization: But How Large Are We

features from data and thus hurt quality Talking About?, NeurlPS 2023 Workshop M3L * similar to training from scratch

Synthetic example Fourier frequency bands as features

Remaining frequency bands
0-32 (full) 0 (backgr.) 1-8 (low) 9-24 (mid) 25 32 (hlgh)

-class 0 - class1  Experimental setup:

* binary classification

e 3-layer scale-invariant MLP

* 16 identically distributed “tick” features
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Feature importance in the synthetic example
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Measuring feature importance Zero out all but Reconstruct images

one group of =¥ with inverse 2D-DFT
frequency bands and evaluate models
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Apply 2D-DFT
to test images
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Create 16 single-feature
test datasets with only
one feature present

Single-feature accuracy, %

Scale-invariant ResNet-18 on CIFAR-10
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Calculate accuracy
on these samples
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Single-feature accuracy, %
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Sort values over features bR PLR

for each individual run ' ' | Remaining frequency bands
sorted feature —e— 0 (backgr.) 1-8 (low) 9-24 (mid) —e— 25-33 (high)

Freqguency band accuracy, %
Frequency band accuracy, %

* Pre-training in reg. 1 gives roughly  « When pre-training in reg. 2B * Pre-training in reg. 2A shows + Small PLRs of reg. 1 slightly
the same importance to all features and 3, feature learning abillity feature sparsity with a focus favour background and

« Although all features are equally s decreased, leading to on , features
useful, pre-training in reg. 2A selects lower quality and no sparsity persisting after fine-tuning . Increasing PLR to reg. 2B

only one feature leading to sparsity and 3 removes sparsity

Practical setti ng More results about other

setups and SWA are here:

The same feature Practical ResNet-18 on CIFAR-10, SGD+momentum Practical ViT-Small on CIFAR-10, Adam
|earning ana|ysis for Fine-tuning with different FLRs Fine-tuning with FLR=1e-4 Fine-tuning with different FLRs Fine-tuning with FLR=1e-5
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PLR _ _ PLR PLR PLR Large LRs 3 regimes

mage - Similarly to the scale-invariant setup, * In contrast, ViT focuses on both O 1080010
augmentations the importance of features and
weight decay for practical ResNet peaks in reg. 2A features, preferring the former component E E
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Frequency band accuracy
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