Where Do Large Learning Rates Lead Us? A Feature Learning Perspective

Ildus Sadrtdinov, Maxim Kodryan, Eduard Pokonechny, Ekaterina Lobacheva*, Dmitry Vetrov*

Overview and main idea

Existing empirical and theoretical research: for optimal results, network training should start with a large initial learning rate (LR).

> What **features** are learned by neural networks when trained with different initial LRs?

We study feature learning in the controlled synthetic example and image classification setup and discover that:

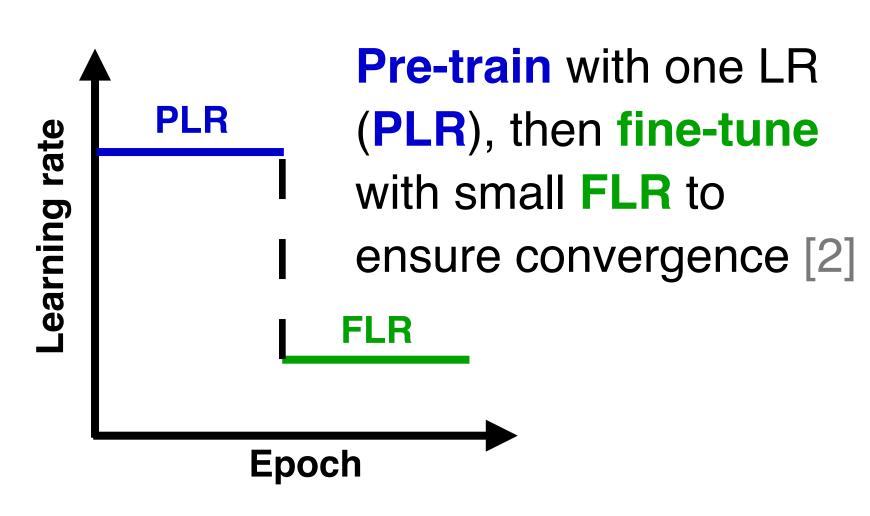
- ✓ optimal initial LRs lead to learing a sparse set of the most useful features
- x smaller initial LRs try to capture all relevant features without specialization
- X larger initial LRs fail to extract useful features from data and thus hurt quality

Setup

Controlled setup (for accurate experiments with fixed LRs) [1]:

- fully scale-invariant networks
- training on the unit sphere

In this setup, training happens in one of three regimes depending on LR

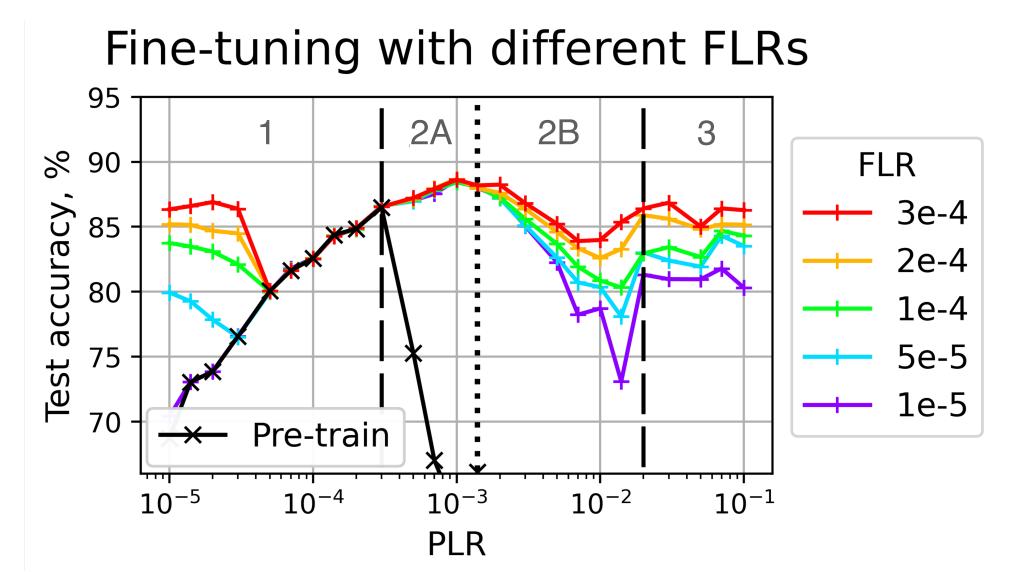


[1]. M. Kodryan et al., Training scale-invariant neural networks on the sphere can happen in three regimes, NeurIPS 2022

[2] E. Lobacheva et al., Large Learning Rates Improve Generalization: But How Large Are We Talking About?, NeurIPS 2023 Workshop M3L

Fine-tuning 3 regimes

Scale-invariant ResNet-18 on CIFAR-10



Regime 1: pre-training converges

- FLR < PLR: no changes
- FLR > PLR: jump to better optimum

Regime 2: pre-training noisily stabilizes

- 2A: the same optimal quality for all FLRs
- 2B: different suboptimal quality when varying FLRs

Regime 3: pre-training diverges

similar to training from scratch

Synthetic example

Measuring feature importance

Create 16 single-feature

test datasets with only

one feature present

Calculate accuracy

on these samples

Sort values over features

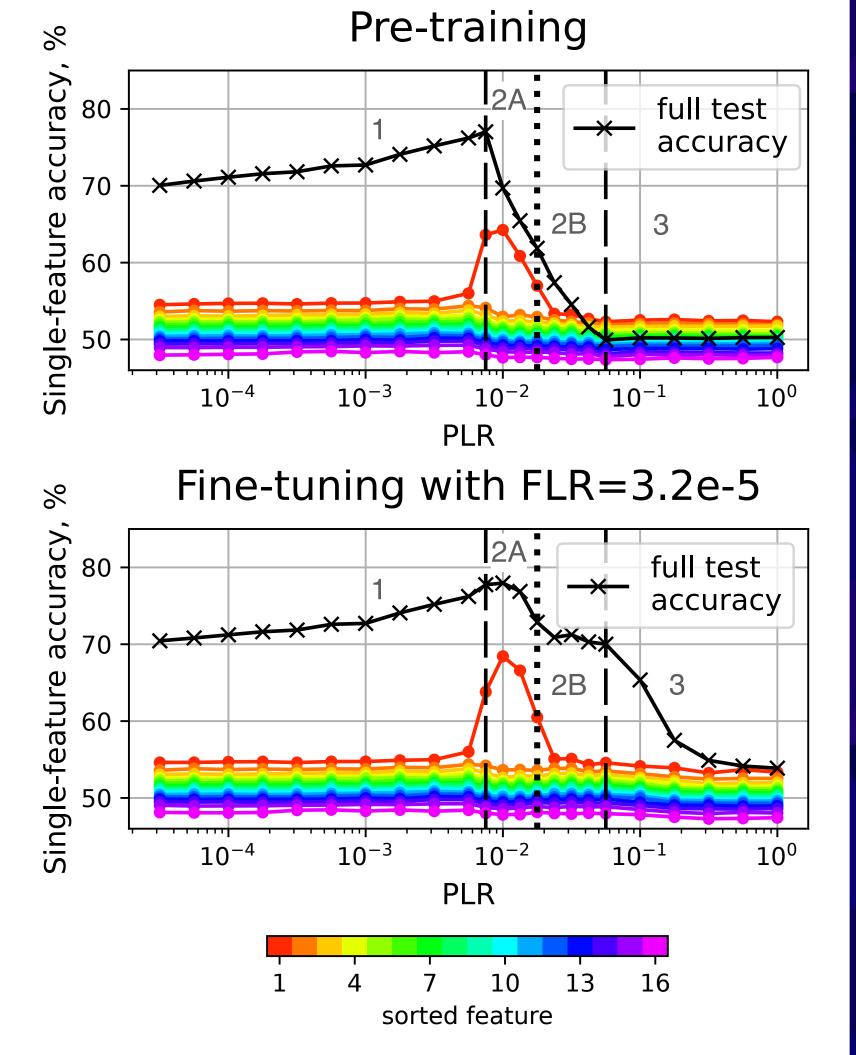
for each individual run

class 0class 1

Experimental setup:

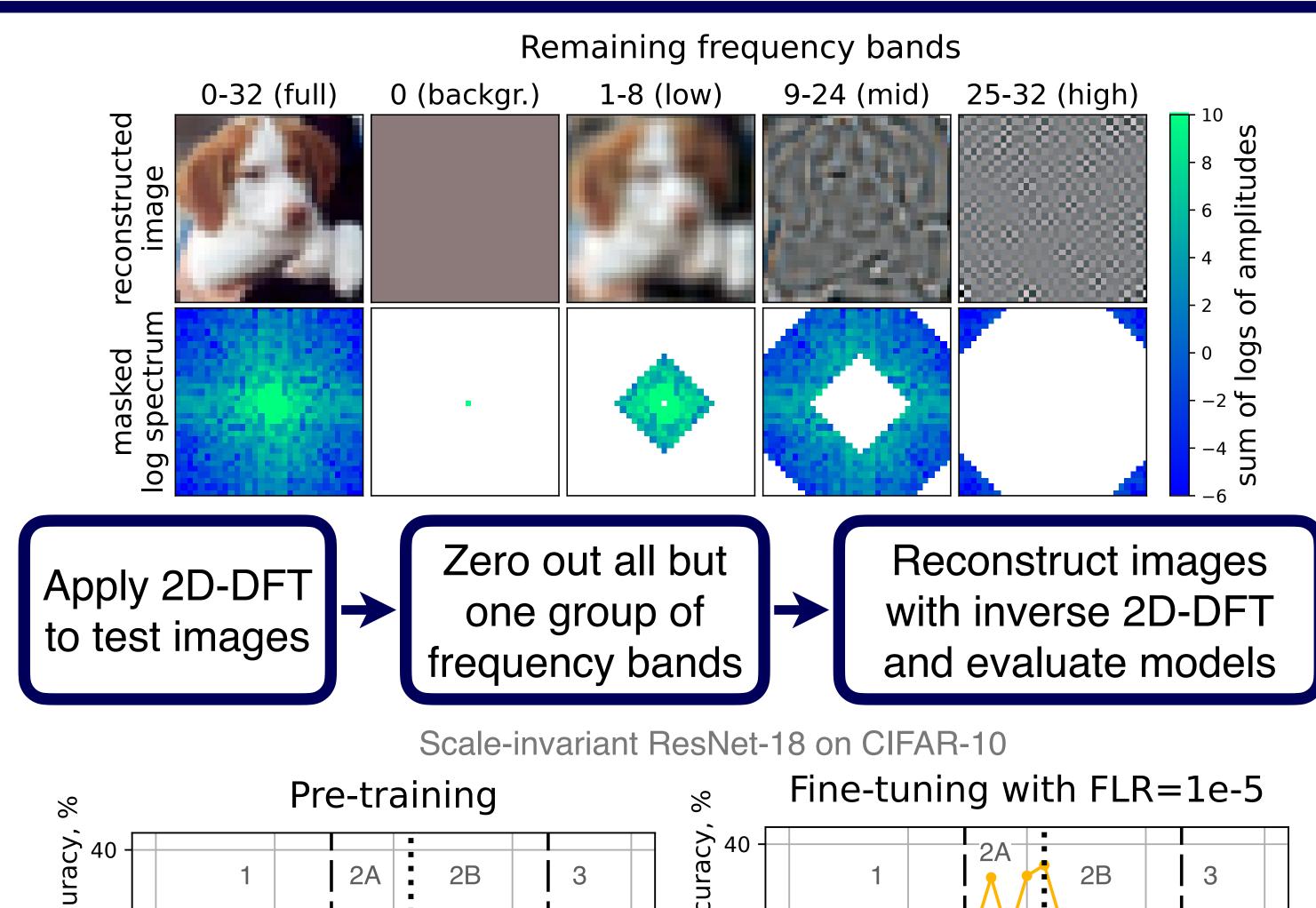
- binary classification
- 3-layer scale-invariant MLP
- 16 identically distributed "tick" features

Feature importance in the synthetic example



• When pre-training in reg. 2B and 3, feature learning ability is decreased, leading to lower quality and no sparsity

Fourier frequency bands as features



Remaining frequency bands

9-24 (mid)

1-8 (low)

Pre-training in reg. 2A shows feature sparsity with a focus on mid frequencies, persisting after fine-tuning

0 (backgr.)

 10^{-2}

- Small PLRs of reg. 1 slightly favour background and **low-frequency** features
- Increasing PLR to reg. 2B and 3 removes sparsity

Pre-training in reg. 1 gives roughly the same importance to all features

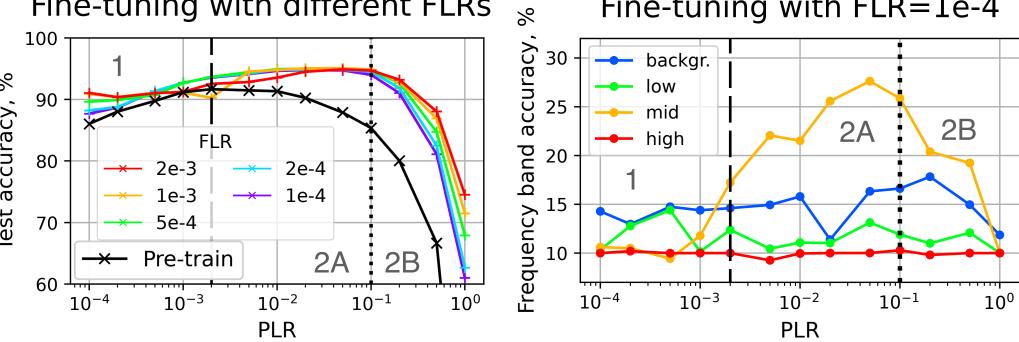
Although all features are equally

useful, pre-training in reg. 2A selects only one feature leading to sparsity

Practical setting

The same feature learning analysis for practical setting:

- regular (not fully scale-invariant) models
- image augmentations
- weight decay
- Practical ResNet-18 on CIFAR-10, SGD+momentum Fine-tuning with different FLRs ** Fine-tuning with FLR=1e-4



Similarly to the scale-invariant setup, the importance of mid-frequency features for practical ResNet peaks in reg. 2A

Practical ViT-Small on CIFAR-10, Adam Fine-tuning with different FLRs $_{8}$ Fine-tuning with FLR=1e-5 accuracy, lest

• In contrast, ViT focuses on both low-frequency and mid-frequency features, preferring the former component

More results about other setups and SWA are here:

→ 25-33 (high)

You may also like:

