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 Wide body of research shows that 'flatter’ minima generalize better

e Algorithms like Sharpness-Aware Minimisation (SAM) work qurte well

Flat Minimum Sharp Minimum

e |earning seems to happen at the Edge-of-Stability (EoS), n & 2/, (H)

But, how are the eigenvalues/eigenvectors really like?
What does ‘sharpness’ even mean?

Insights from a popular toy-model

e Valid for arbrtrary number of datapoints and any layer-width; MSE loss

Key Result The above network with 2m parameters has an eigenspectrum consisting of m — 1
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 CQutlier eigenvalues exists as pairs; only one remains at convergence
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* Sharpness quantifies

Training loss

Hessian Eigenvalue

besides overall parameter norm

-0.4

- 0.2

e RelLU leads to cell-wise decomposition, but each cell like linear case , f
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Key Result: Evolution of Outlier Eigenvalue Pair
Rel.U case) The Hessian undergoes a cell-wise
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