
Insights about the Eigenspectrum: 

•   Outlier eigenvalues exists as pairs; only one remains at convergence

•   Sharpness quantifies discrepancy b/w layer norms, co-linearity of 
parameters,  extent of target captured,  besides overall parameter norm

• ReLU leads to cell-wise decomposition, but each cell like linear case 
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The Hessian matrix is of fundamental significance

•   Wide body of research shows that 'flatter' minima generalize better

•   Algorithms like Sharpness-Aware Minimisation (SAM) work quite well

•   Learning seems to happen at the Edge-of-Stability (EoS), η ≈ 2/λmax(H)

But, how are the eigenvalues/eigenvectors really like?
What does ‘sharpness’ even mean?

Insights from a popular toy-model

•   Valid for arbitrary number of datapoints and any layer-width; MSE loss
Setup:   1 hidden-layer univariate network (linear/ReLU) f(x) = ⟨w , σ(v x) ⟩

w, v ∈ ℝm

The above network with  parameters has an eigenspectrum consisting of  
repeated eigenvalues    and an outlying eigenvalue pair given by

2m m − 1
λbulk = ± xδ

Key Result : 
 (Linear case) 
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The Hessian undergoes a cell-wise
 decomposition, which here is fully 

decoupled:

Key Result: 
 (ReLU case) 
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Eigenvector Structure:

Here, outlier eigenvectors are Linear 
combination of parameter and 

gradient vectors Bulk vs Outlier spectrum: ReLU
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