Insights about the Eigenspectrum:

- Outlier eigenvalues exists as pairs; only one remains at convergence
- Sharpness quantifies *discrepancy b/w layer norms,co-linearity of parameters, extent of target captured,* besides overall parameter norm
- ReLU leads to cell-wise decomposition, but each cell like linear case
- Wide body of research shows that 'flatter' minima generalize better
- Algorithms like Sharpness-Aware Minimisation (SAM) work quite well
- Learning seems to happen at the Edge-of-Stability (EoS), $\eta \approx 2/\lambda_{\text{max}}(H)$

Closed form of the Hessian Spectrum

for some Neural Networks **Sidak Pal Singh & Thomas Hofmann**

*

The Hessian matrix is of fundamental significance

The above network with $2m$ parameters has an eigenspectrum consisting of $m-1$ repeated eigenvalues $\lambda_{\text{bulk}} = \pm \, \overline{x} \overline{\delta} \,$ and an outlying eigenvalue pair given by **Key Result : (Linear case)**

But, how are the eigenvalues/eigenvectors really like? What does 'sharpness' even mean?

Insights from a popular toy-model

• Valid for arbitrary number of datapoints and any layer-width; MSE loss **Setup: 1 hidden-layer univariate network** (linear/ReLU) $f(x) = \langle w, \sigma(vx) \rangle$ **w**, **v** ∈ ℝ*^m*

$$
\lambda_{\text{outlier}} = \frac{1}{2} \left(\sigma^2 ||\mathbf{w}||^2 + \sigma^2 ||\mathbf{v}||^2 \right) \pm \frac{1}{2} \sqrt{\left(\sigma^2 ||\mathbf{w}||^2 - \sigma^2 ||\mathbf{v}||^2 \right)^2 + 4\sigma^4 \left(||\mathbf{w}||^2 ||\mathbf{v}||^2 - \langle \mathbf{w}, \mathbf{v} \rangle^2 \right) + 4 \left(2 \langle \mathbf{w}, \mathbf{v} \rangle - \overline{\mathbf{y} \mathbf{x}} \right)^2}
$$

where $\sigma^2=\dot{-}\sum x_i^2$ is the (uncentered) input variance and $\overline{\delta x}=\frac{1}{n}\sum_{i=1}^n x_i\,\delta_i$, with $\delta_i=\langle \mathbf{w},\mathbf{v}\rangle\,x_i-y_i$ is the residual-input covariance 1 *n n* ∑ *i*=1 x_i^2 is the (uncentered) input variance and $\overline{\delta x}$ = $\frac{1}{n} \sum_{i=1}^{n} x_i \delta_i$, with $\delta_i = \langle \mathbf{w}, \mathbf{v} \rangle x_i - y_i$

decomposition, which here is fully

The Hessian undergoes a cell-wise **Key Result: (ReLU case)**

decoupled:

$$
\mathbf{z}_{\text{outlier}_{i}} = \begin{pmatrix} \lambda_{\text{outlier}_{i}} \mathbf{w} + \overline{x} \delta \mathbf{v} \\ \overline{x} \delta \mathbf{w} + \lambda_{\text{outlier}_{i}} \mathbf{v} \end{pmatrix}
$$

Eigenvector Structure:

Here, outlier eigenvectors are Linear combination of parameter and

Hessian Spectrum for a 1-hidden layer ReLU network of width 10

