Gradient dissent in language model training and saturation

Andrei Mircea, Ekaterina Lobacheva, Irina Rish Université de Montréal // Mila

Overview

Goal: characterize learning dynamics of saturation to better understand and mitigate it.

Challenge: no shared basis in which to compare dynamics of different models. **Approach:** create interpretable shared basis for studying dynamics, using attractive/repulsive components of per-sample gradients. Findings: gradient dissent, where attractive/repulsive components become systematically opposed with saturation.

1. Output layer gradient decomposition

LM output layers lead to gradients which decompose into attractive (∇^+) and repulsive (∇^{-}) components in activations **h** and model parameters θ . Attractive/repulsive grads increase/decrease true/false logits respectively.

2. Characterizing saturation across model sizes and token frequecies

- Saturation is a sharp transition in models below a certain size.
- Frequent tokens saturate rapidly.
- Learning and saturation occur primarily in the **Zipfian long tail**.
- Non-Zipfian outliers behave in qualitatively different manner.

3. Comparing learning dynamics in shared latent basis across tokens and models

Creating a shared basis for learning dynamics:

- Project normalized **h** onto normalized ∇_{h}^{+} and ∇_{h}^{-}
- Resulting $\cos(\mathbf{h}, \nabla_{\mathbf{h}}^{+})$ and $\cos(\mathbf{h}, \nabla_{\mathbf{h}}^{-})$ become shared _ 2D basis in which to compare learning dynamics across token frequencies and across model sizes.
- Intuitively corresponds to angular alignment of the hidden state vectors with each gradient component.

Observations and gradient dissent hypothesis:

- Saturation transition co-occurs with collapse in dynamics as $\cos(\mathbf{h}, \nabla_{\mathbf{h}}^{+}) = -1$ and $\cos(\mathbf{h}, \nabla_{\mathbf{h}}^{-}) = 1$.
- <u>Gradient dissent</u>: collapse suggests ∇_h^+ and ∇_h^- become totally opposed and interfere destructively, starving gradients in remaining model parameters θ .

4. Evidence of dissent in saturation

5. Summary of findings and key takeaways

 $\cos(\nabla^+, \nabla^-) \rightarrow -1$ as small models saturate, but remains stable for larger unsaturated models

During saturation, $||\nabla^+||$ and $||\nabla^-||$ explode as **||∇||** remains stable, indicating destructive interference between gradient components.

- Language model saturation is a sharp transition concentrated in the Zipfian long tail of tokens.
- To characterize and compare learning dynamics across models, samples, parameters, activations, etc. a shared and interpretable basis can be created by linearly decomposing the gradient.
- Gradient dissent is a phenomenon which arises as attractive/repulsive components of the output layer gradient become systematically opposed
- Gradient dissent transitions are strongly associated with model saturation transitions.

6. Open questions and future work

- What is the role of dissent in gradient saturation?
- Is saturation due to capacity or training dynamics?
- Do output layers bottleneck learning dynamics?
- What is the effect of Zipfian long-tail and outlier tokens on learning dynamics and saturation?