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Goal: characterize learning dynamics of 
saturation to better understand and 
mitigate it.
Challenge: no shared basis in which to 
compare dynamics of different models.
Approach: create interpretable shared 
basis for studying dynamics, using 
attractive/repulsive components of 
per-sample gradients.
Findings: gradient dissent, where 
attractive/repulsive components become 
systematically opposed with saturation.
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LM output layers lead to gradients which decompose into attractive (∇+) 
and repulsive (∇–) components in activations h and model parameters θ.
Attractive/repulsive grads increase/decrease true/false logits respectively.
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- Saturation is a sharp transition in 
models below a certain size.

- Frequent tokens saturate rapidly.
- Learning and saturation occur 

primarily in the Zipfian long tail.
- Non-Zipfian outliers behave in 

qualitatively different manner.

Creating a shared basis for learning dynamics:
- Project normalized h onto normalized ∇h

+ and ∇h
–

- Resulting cos(h, ∇h
+) and cos(h, ∇h

–) become shared 
2D basis in which to compare learning dynamics 
across token frequencies and across model sizes.

- Intuitively corresponds to angular alignment of the 
hidden state vectors with each gradient component.

Observations and gradient dissent hypothesis:
- Saturation transition co-occurs with collapse in 

dynamics as cos(h, ∇h
+) = –1 and cos(h, ∇h

–) = 1.
- Gradient dissent: collapse suggests ∇h

+ and ∇h
– 

become totally opposed and interfere destructively, 
starving gradients in remaining model parameters θ.

During saturation, ||∇ +|| and ||∇ –|| explode as 
||∇|| remains stable, indicating destructive 
interference between gradient components. 

 4. Evidence of dissent in saturation
cos(∇+, ∇–) → –1 as small models saturate, but 
remains stable for larger unsaturated models

 5. Summary of findings and key takeaways
● Language model saturation is a sharp transition 

concentrated in the Zipfian long tail of tokens.
● To characterize and compare learning dynamics 

across models, samples, parameters, activations, 
etc. a shared and interpretable basis can be created 
by linearly decomposing the gradient.

● Gradient dissent is a phenomenon which arises as 
attractive/repulsive components of the output layer 
gradient become systematically opposed

● Gradient dissent transitions are strongly associated 
with model saturation transitions.

 6. Open questions and future work
● What is the role of dissent in gradient saturation?
● Is saturation due to capacity or training dynamics?
● Do output layers bottleneck learning dynamics?
● What is the effect of Zipfian long-tail and outlier 

tokens on learning dynamics and saturation?


