Mathematical Framework for Online Social Media Auditing

Department of Electrical Engineering, Engineering Faculty, Tel Aviv University

Introduction

Objective: is to moderate any intense influence on the user's decision-making, which may be caused by observing filtered possible contents, compared to what would have been the user's decision-making under randomizing from possible contents.

The filtered feed shown to user $u \in [0]$ at time $t \in \mathbb{N}$ by $\mathbf{X}_{u}^{F}(t)$, and assume that it consists of $M \in \mathbb{N}$ pieces of contents, namely, $\mathbf{X}_{u}^{\mathsf{F}}(t) = \{\mathbf{x}_{1,u}^{\mathsf{F}}(t), \ldots, \mathbf{x}_{M,u}^{\mathsf{F}}(t)\},\$ where $\mathbf{x}_{j,u}^{\mathsf{F}}(t) \in \mathcal{X}$ denotes a piece of content, for $1 \leq j \leq M$. Similarly, *reference feeds* $\mathbf{X}_{u}^{R}(t)$ is the one that could

Auditing algorithm

(Sum closeness testing). Given sample access the pairs of distributions (P_u, Q_u) Problem over [n], for $u \in [0]$, and bounds $\varepsilon_2 > \varepsilon_1 \geq 0$, and $\delta > 0$, distinguish with probability of at least $1-\delta$ between $\sum_{u=1}^{\mathsf{U}} ||P_u - Q_u||_1 \leq |\mathsf{U}| \cdot \varepsilon_1$ and $\sum_{u=1}^{\mathsf{U}} ||P_u - Q_u||_1 \geq |\mathsf{U}| \cdot \varepsilon_2$, whenever the distributions satisfy one of these two inequalities.

Algorithm 1: Tolerant closeness tester for the i.i.d. pairs

Input: $\mathsf{U}, n, m, \varepsilon_1, \delta$, and samples \mathcal{S}_P and \mathcal{S}_Q from $\{(P_u, Q_u)\}_{u \in \mathsf{U}}$. Set $\tau \longleftarrow c \min \left(\frac{m^{3/2} \varepsilon_2}{\pi^{\frac{1}{2}}}, \frac{\mathsf{U} m^2 \varepsilon_2^2}{n} \right)$ Compute G in (13). If $G < \tau$, then Return YES Else $G \geq \tau$, then **Return** NO

Auditor testing problem Fix $\varepsilon_1, \varepsilon_2 \in (0,1)$ and $\delta \in (0,1)$ with $\varepsilon_1 < \varepsilon_2$. Given a set of t_T pairs of Markovian trajectories $[(\mathbf{X}_u^{\mathsf{F}}(t_1), \mathbf{X}_u^{\mathsf{R}}(t_1))$, ..., $(\mathbf{X}_u^{\mathsf{F}}(t_T), \mathbf{X}_u^{\mathsf{R}}(t_T))]$ drawn from an *unknown* corresponding pair of Markov chains (Q_u^F, P_u^R) , for each user $u \in U$, an $(\varepsilon_1, \varepsilon_2, \delta)$ -sum of pairs tolerant closeness testing algorithm outputs YES if V_{filter} $\leq \varepsilon_1$ and 'NO if $V_{filter} \geq \varepsilon_2$, with probability at least $1 - \delta$.

have hypothetically selected by the platform if it strictly followed the consumer-provider agreement.

We define $\mathbb{P}(\mathbf{x}_{\ell,u}^{\mathsf{F}}(t_{i,b})|\mathbf{x}_{\ell,u}^{\mathsf{F}}(t_{0,b}),\ldots,\mathbf{x}_{\ell,u}^{\mathsf{F}}(t_{i-1,b}))=\mathbb{P}(\mathbf{x}_{\ell,u}^{\mathsf{F}}(t_{i,b})|\mathbf{x}_{\ell,u}^{\mathsf{F}}(t_{i-1,b})),$ and $\mathbb{P}(\mathbf{x}_{\ell,u}^{\mathsf{F}}(t_{i,b})=s_2|\mathbf{x}_{\ell,u}^{\mathsf{F}}(t_{i-1,b})=s_1)\triangleq Q_{u,b}(s_1,s_2)$, for any two possible states $s_1, s_2 \in \mathcal{X}$. Similarily, for the reference feed we define $P_{u,b}^R \triangleq [P_{u,b}(s_1,s_2)]_{i,j \in \mathcal{X}}$.

Algorithm 2: Filtered vs. reference auditing procedure **Input:** $\mathsf{T}, n \triangleq |\mathcal{X}|, \varepsilon_1, \varepsilon_1, \delta, \bar{m}$, and feeds $\{\mathbf{X}_u^{\mathsf{R}}(t), \mathbf{X}_u^{\mathsf{F}}(t)\}_{t=1}^{\mathsf{T}},$ for $u \in [\mathsf{U}].$ **Output:** YES if $\mathbb{V}_{\text{filter}} \leq \varepsilon_1$ / NO if $\mathbb{V}_{\text{filter}} \geq \varepsilon_2$. For $i \leftarrow 1, 2, \ldots, n$ Set $S^{\mathsf{R}} \leftarrow \emptyset$ and $S^{\mathsf{F}} \leftarrow \emptyset$ For every user $u \leftarrow 1, 2, \ldots, U$ If $\sum_{i=1}^{M} \mathcal{N}_i^{\mathbf{x}_{j,u}^{\mathsf{R}}} < \bar{m}$ or $\sum_{i=1}^{M} \mathcal{N}_i^{\mathbf{x}_{j,u}^{\mathsf{L}}} < \bar{m}$ Return NO Calculate $\mathcal{S}_u^{\mathsf{R}} \leftarrow \bigcup_{j=1}^{\mathsf{M}} \psi_{\bar{m}}^{(i)} \left(\{ \boldsymbol{x}_{j,u}^{\mathsf{R}}(t) \}_{t=1}^{\mathsf{T}} \right)$ and $\mathcal{S}_{u}^{\mathsf{F}} \leftarrow \cup_{j=1}^{\mathsf{M}} \psi_{\bar{m}}^{(i)} \left(\{\boldsymbol{x}_{j,u}^{\mathsf{F}}(t)\}_{t=1}^{\mathsf{T}} \right)$ Do $S^{\mathsf{R}} \leftarrow S^{\mathsf{R}} \cup S_{\nu}^{\mathsf{R}}$ and $S^{\mathsf{F}} \leftarrow S^{\mathsf{F}} \cup S_{\nu}^{\mathsf{F}}$ If IIDTESTER(\mathcal{S}^R , \mathcal{S}^F , δ , ε_1 , ε_2 , \bar{m} , n) = NO Return NO

Return YES

The mapping $\psi_k^{(i)}(Z_1^q)$ is define as follows: we look at the first k visits to state i (i.e., at times $t = t_1, \ldots, t_k$ with $Z_t = i$ and write down the corresponding transitions in Z_1^q , i.e., Z_{t+1} .

The *total filtering-variability metric* as,

$$
\mathbb{V}_{\textsf{filter}} = \frac{1}{|\mathcal{U}|}\sum_{u \in \mathcal{U}}\left\|\mathsf{P}_{u,b}^{\boldsymbol{R}} - \mathsf{Q}_{u,b}^{\boldsymbol{F}}\right\|_{\infty},
$$

where $\mathbf{P}_{u,b}^{\mathbf{R}}(i) \triangleq [P_{u,b}(i,j)]_{j \in \mathcal{X}}, \mathbf{Q}_{u,b}^{\mathbf{F}}(i) \triangleq [Q_{u,b}(i,j)]_{j \in \mathcal{X}},$ and $\mathcal{U} = [\mathbf{U}].$

Auditor's goal

Violation. we define a violation event as the case where V_{filter} is "unusually large". Specifically, the audit's decision task is formulated as the following hypothesis testing problem,

 \mathcal{H}_0 : $V_{\text{filter}} \leq \varepsilon_1$ vs. \mathcal{H}_1 : $V_{\text{filter}} \geq \varepsilon_2$,

where $\varepsilon_2 > \varepsilon_1 \geq 0$ govern the auditing strictness.

Devising successful statistical tests which solve the above test with high probability, guarantees that whenever the auditor decision is \mathcal{H}_0 , then the platform honors the consumerprovider agreement, since the beliefs and actions are indistinguishable under the filtered and reference feeds.

Sample complexity

Theorem 4 (Sample complexity of the sum closeness testing). There exists an absolute constant $c > 0$ such that, for any $0 \le \varepsilon_2 \le 1$ and $0 \le \varepsilon_1 \le c\varepsilon_2$, given

$$
m = \mathcal{O}\left(\sqrt{\frac{n}{\varepsilon_2^4 \delta \mathsf{U}}} + n \frac{\varepsilon_1^2}{\varepsilon_2^4} + n \frac{\varepsilon_1}{\varepsilon_2^2} + \frac{n^{2/3}}{\mathsf{U} \varepsilon_2^{4/3}}\right)
$$

samples from each of ${P_u}_{u=1}^U$ and ${Q_u}_{u=1}^U$, Algorithm 1 distinguish between $\sum_{u=1}^U ||P_u - P_u||$ $Q_u||_1 \leq U \cdot \varepsilon_1$ and $\sum_{u=1}^{U} ||P_u - Q_u||_1 \geq U \cdot \varepsilon_2$, with probability at least $1 - \delta$.

Theorem 5 (Auditing sample complexity). Given an $(\varepsilon_1, \varepsilon_2, \delta)$ *i.i.d.* tolerant-closenesstester for n state distributions with the sample complexity of $m(n, \varepsilon_1, \varepsilon_2, \delta)$, then we can $(\varepsilon_1, \varepsilon_2, \delta)$ testing hypothesis (4) using,

$$
\mathsf{T}=\mathcal{O}\left(\max_{u\in[\mathsf{U}]}\max_{\mathsf{W}\in\{\mathsf{Q}_u^\mathsf{F},\mathsf{P}_u^\mathsf{R}\}}t_{\mathsf{cov}}^{\bar{m}}\left(\mathsf{M};\mathsf{W}\right)\log\frac{\mathsf{U}}{\delta}\right),
$$

samples per user.

Counterfactual regulation

Let S be a regulatory statement that an inspector (or, perhaps, the platform itself) wish to test. For example, S could be: "The platform should produce similar feeds, in the course of a given time horizon T , for users who are identical except for property \mathscr{P} ", where \mathscr{P} could be ethnicity, sexual orientation, gender, a combination of these factors, etc. Let $\mathcal{U}_{\mathscr{P}} \subset [U] \times [U]$ be a subset of pairs of users that comply with \mathscr{P} . Then, for any pair of users $(i, j) \in \mathcal{U}_{\mathscr{P}}$, the inspector's objective is to determine whether the platform's filtering algorithm cause

Auditing formulation

Definition 1 (ℓ -joint-k-cover time). Let $Z_{1,1}^{\infty}, Z_{2,1}^{\infty}, ..., Z_{\ell,1}^{\infty}$ be ℓ -independent infinite trajectories drawn by the same Markov chain M. For $t \geq 1$, let $\{N_i^{\mathbb{Z}_j}(t), \forall i \in [n]\}$ be the counting distribution of states $i \in [n]$ appearing in the subtrajectory $\mathsf{Z}_{j,1}^t$ up to time t. For any $k, \ell \in \mathbb{N}$, the random ℓ -joint-k-cover time $\tau_{cov}^{(k)}(\ell; \mathcal{M})$, is the first time when all ℓ independent random walks have jointly visited every state of $\mathcal M$ at least k times, i.e.,

$$
\tau_{\mathsf{cov}}^{(k)}(\ell;\mathscr{M}) \triangleq \inf \left\{ t \geq 0 : \forall i \in [n], \sum_{j=1}^\ell \mathcal{N}_i^{\mathsf{Z}_j}(t) \geq k \right\}.
$$

Accordingly, the ℓ -joint-k-cover time is given by

$$
t^{(k)}_{\mathsf{cov}}(\ell;\mathscr{M}) \triangleq \max_{\mathbf{v} \in [n]^{\ell}} \mathbb{E}\left[\tau^{(k)}_{\mathsf{cov}}(\ell;\mathscr{M}) \mid \mathsf{Z}_{1,1} = v_1, \mathsf{Z}_{2,1} = v_2,...,\mathsf{Z}_{\ell,1} = v_\ell\right],
$$

where the coordinates of $\mathbf{v} = (v_1, v_2, \dots, v_\ell) \in [n]^\ell$ correspond to initial states.

user i 's and user j 's beliefs and actions to be significantly different.

Definition 7 (Counterfactual total variability). Let $\mathcal{U}_{\mathcal{P}} \subset [\mathsf{U}] \times [\mathsf{U}]$ be a subset of pairs of users that comply with \mathscr{P} . Then, for any pair of users $(i, j) \in \mathcal{U}_{\mathscr{P}}$, the total variability in algorithmic filtering behavior for counterfactual users is given by

$$
\begin{split} \bar{\mathbb{V}}_{\text{cu}}(\mathcal{S}, \mathcal{U}_{\mathscr{P}}) &\triangleq \frac{1}{|\mathcal{U}_{\mathscr{P}}|} \sum_{(i,j) \in \mathcal{U}_{\mathscr{P}}} \max_{\ell \in \mathcal{X}} \mathsf{d}_{\mathsf{TV}}\left(Q_i(\ell, \cdot), Q_j(\ell, \cdot)\right) \\ &= \frac{1}{|\mathcal{U}_{\mathscr{P}}|} \sum_{(i,j) \in \mathcal{U}_{\mathscr{P}}} \max_{\ell \in \mathcal{X}} \|\mathbf{Q}_i(\ell) - \mathbf{Q}_j(\ell)\|_1 \\ &= \frac{1}{|\mathcal{U}_{\mathscr{P}}|} \sum_{(i,j) \in \mathcal{U}_{\mathscr{P}}} \|\mathbf{Q}_i^{\mathbf{F}} - \mathbf{Q}_j^{\mathbf{F}}\|_{\infty} \,. \end{split}
$$

The investigator's task to test for violations in the following sense:

$$
\mathcal{H}^{\mathcal{S}}_0: \bar{\mathbb{V}}_{\text{cu}}(\mathcal{S},\mathcal{U}_{\mathscr{P}})\leq \varepsilon_1 \quad \text{ vs.} \quad \mathcal{H}^{\mathcal{S}}_1: \bar{\mathbb{V}}_{\text{cu}}(\mathcal{S},\mathcal{U}_{\mathscr{P}})\geq \varepsilon_2.
$$

Conclusions

The study presents an auditing method that tests for unexpected deviations in the user's decision-making process over a predefined time horizon. These deviations could be due to selective content filtering by the platform. We developed metrics for effectiveness and implementability methods with sample complexity guarantees.