Mathematical Framework for Online Social Media Auditing

Wasim Huleihel, Yehonathan Refael

Department of Electrical Engineering, Engineering Faculty, Tel Aviv University

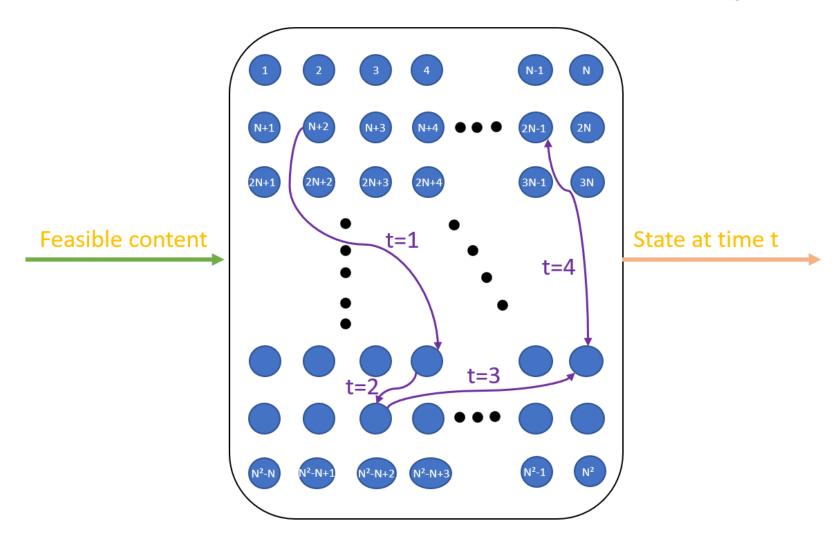
Introduction

Objective: is to moderate any intense influence on the user's decision-making, which may be caused by observing filtered possible contents, compared to what would have been the user's decision-making under randomizing from possible contents.

The filtered feed shown to user $u \in [\mathsf{U}]$ at time $t \in \mathbb{N}$ by $\mathbf{X}^\mathsf{F}_u(t)$, and assume that it consists of $\mathsf{M} \in \mathbb{N}$ pieces of contents, namely, $\mathbf{X}^\mathsf{F}_u(t) = \{ \boldsymbol{x}^\mathsf{F}_{1,u}(t), \dots, \boldsymbol{x}^\mathsf{F}_{\mathsf{M},u}(t) \}$, where $\boldsymbol{x}^\mathsf{F}_{j,u}(t) \in \mathcal{X}$ denotes a piece of content, for $1 \leq j \leq \mathsf{M}$. Similarly, reference feeds $\mathbf{X}^\mathsf{R}_u(t)$ is the one that could have hypothetically selected by the platform if it strictly followed the consumer-provider agreement.

 $\left\{ x_{l,u}^{\mathsf{F}}(t_{0,b}) \right\}_{l=1}^{\mathsf{M}}, \left\{ x_{l,u}^{\mathsf{F}}(t_{1,b}) \right\}_{l=1}^{\mathsf{M}}, \dots, \left\{ x_{l,u}^{\mathsf{F}}(t_{\mathsf{T},b}) \right\}_{l=1}^{\mathsf{M}}$ "User Sentiments" "External Data" Platform Feeds X_{u}^{F} User i "Actions" "Data" Auditor

We define $\mathbb{P}(\boldsymbol{x}_{\ell,u}^{\mathsf{F}}(t_{i,b})|\boldsymbol{x}_{\ell,u}^{\mathsf{F}}(t_{0,b}),\ldots,\boldsymbol{x}_{\ell,u}^{\mathsf{F}}(t_{i-1,b})) = \mathbb{P}(\boldsymbol{x}_{\ell,u}^{\mathsf{F}}(t_{i,b})|\boldsymbol{x}_{\ell,u}^{\mathsf{F}}(t_{i-1,b})),$ and $\mathbb{P}(\boldsymbol{x}_{\ell,u}^{\mathsf{F}}(t_{i,b}) = s_2|\boldsymbol{x}_{\ell,u}^{\mathsf{F}}(t_{i-1,b}) = s_1) \triangleq Q_{u,b}(s_1,s_2),$ for any two possible states $s_1, s_2 \in \mathcal{X}$. Similarly, for the reference feed we define $\mathsf{P}_{u,b}^{\boldsymbol{R}} \triangleq [P_{u,b}(s_1,s_2)]_{i,j\in\mathcal{X}}$.

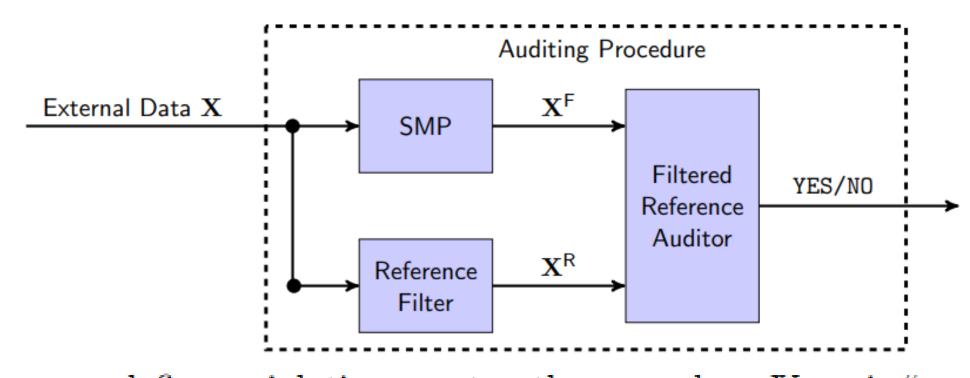


The $total\ filtering\mbox{-}variability\ metric\ as,$

$$\mathbb{V}_{\mathsf{filter}} = rac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}} \left\| \mathsf{P}_{u,b}^{oldsymbol{R}} - \mathsf{Q}_{u,b}^{oldsymbol{F}}
ight\|_{\infty},$$

where $\mathbf{P}_{u,b}^{\mathbf{R}}(i) \triangleq [P_{u,b}(i,j)]_{j \in \mathcal{X}}, \ \mathbf{Q}_{u,b}^{\mathbf{F}}(i) \triangleq [Q_{u,b}(i,j)]_{j \in \mathcal{X}}, \text{ and } \mathcal{U} = [\mathsf{U}].$

Auditor's goal



Violation. we define a violation event as the case where V_{filter} is "unusually large". Specifically, the audit's decision task is formulated as the following hypothesis testing problem,

$$\mathcal{H}_0: \mathbb{V}_{\mathsf{filter}} \leq \varepsilon_1 \quad \mathsf{vs.} \quad \mathcal{H}_1: \mathbb{V}_{\mathsf{filter}} \geq \varepsilon_2,$$

where $\varepsilon_2 > \varepsilon_1 \ge 0$ govern the auditing strictness.

Devising successful statistical tests which solve the above test with high probability, guarantees that whenever the auditor decision is \mathcal{H}_0 , then the platform honors the consumer-provider agreement, since the beliefs and actions are indistinguishable under the filtered and reference feeds.

Auditing formulation

Definition 1 (ℓ -joint-k-cover time). Let $\mathsf{Z}_{1,1}^\infty, \mathsf{Z}_{2,1}^\infty, ..., \mathsf{Z}_{\ell,1}^\infty$ be ℓ -independent infinite trajectories drawn by the same Markov chain \mathscr{M} . For $t \geq 1$, let $\{\mathcal{N}_i^{\mathsf{Z}_j}(t), \forall i \in [n]\}$ be the counting distribution of states $i \in [n]$ appearing in the subtrajectory $\mathsf{Z}_{j,1}^t$ up to time t. For any $k, \ell \in \mathbb{N}$, the random ℓ -joint-k-cover time $\tau_{\mathsf{cov}}^{(k)}(\ell; \mathscr{M})$, is the first time when all ℓ independent random walks have jointly visited every state of \mathscr{M} at least k times, i.e.,

$$\tau_{\mathsf{cov}}^{(k)}(\ell; \mathscr{M}) \triangleq \inf \left\{ t \ge 0 : \forall i \in [n], \sum_{j=1}^{\ell} \mathcal{N}_i^{\mathsf{Z}_j}(t) \ge k \right\}.$$

Accordingly, the ℓ -joint-k-cover time is given by

$$t_{\mathsf{cov}}^{(k)}(\ell;\mathscr{M}) \triangleq \max_{\mathbf{v} \in [n]^{\ell}} \mathbb{E}\left[\tau_{\mathsf{cov}}^{(k)}(\ell;\mathscr{M}) \mid \mathsf{Z}_{1,1} = v_1, \mathsf{Z}_{2,1} = v_2, ..., \mathsf{Z}_{\ell,1} = v_\ell\right],$$

where the coordinates of $\mathbf{v} = (v_1, v_2, \dots, v_\ell) \in [n]^\ell$ correspond to initial states.

Auditing algorithm

Problem (Sum closeness testing). Given sample access the pairs of distributions (P_u, Q_u) over [n], for $u \in [U]$, and bounds $\varepsilon_2 > \varepsilon_1 \ge 0$, and $\delta > 0$, distinguish with probability of at least $1 - \delta$ between $\sum_{u=1}^{U} \|P_u - Q_u\|_1 \le |\mathsf{U}| \cdot \varepsilon_1$ and $\sum_{u=1}^{U} \|P_u - Q_u\|_1 \ge |\mathsf{U}| \cdot \varepsilon_2$, whenever the distributions satisfy one of these two inequalities.

Algorithm 1: Tolerant closeness tester for the i.i.d. pairs

Input: U, $n, m, \varepsilon_1, \delta$, and samples S_P and S_Q from $\{(P_u, Q_u)\}_{u \in [U]}$. Set $\tau \leftarrow c \min\left(\frac{m^{3/2}\varepsilon_2}{n^{\frac{1}{2}}}, \frac{\mathsf{U}m^2\varepsilon_2^2}{n}\right)$

Compute G in (13).

If $G < \tau$, then **Return** YES

Else $G \geq \tau$, then Return NO

Auditor testing problem Fix $\varepsilon_1, \varepsilon_2 \in (0,1)$ and $\delta \in (0,1)$ with $\varepsilon_1 < \varepsilon_2$. Given a set of t_T pairs of Markovian trajectories $\left[\left(\mathbf{X}_u^\mathsf{F}(t_1), \mathbf{X}_u^\mathsf{R}(t_1)\right), \ldots, \left(\mathbf{X}_u^\mathsf{F}(t_T), \mathbf{X}_u^\mathsf{R}(t_T)\right)\right]$ drawn from an unknown corresponding pair of Markov chains $\left(\mathsf{Q}_u^F, \mathsf{P}_u^R\right)$, for each user $u \in \mathsf{U}$, an $(\varepsilon_1, \varepsilon_2, \delta)$ -sum of pairs tolerant closeness testing algorithm outputs YES if $V_{\mathsf{filter}} \leq \varepsilon_1$ and 'NO if $V_{\mathsf{filter}} \geq \varepsilon_2$, with probability at least $1 - \delta$.

Algorithm 2: Filtered vs. reference auditing procedure

Input: T, $n \triangleq |\mathcal{X}|$, $\varepsilon_1, \varepsilon_1, \delta$, \bar{m} , and feeds $\{\mathbf{X}_u^{\mathsf{R}}(t), \mathbf{X}_u^{\mathsf{F}}(t)\}_{t=1}^{\mathsf{T}}$, for $u \in [\mathsf{U}]$.

Output: YES if $\mathbb{V}_{\mathsf{filter}} \leq \varepsilon_1 \ / \ \mathsf{NO} \ \mathsf{if} \ \mathbb{V}_{\mathsf{filter}} \geq \varepsilon_2.$

For $i \leftarrow 1, 2, \ldots, n$

Set $\mathcal{S}^{\mathsf{R}} \leftarrow \emptyset$ and $\mathcal{S}^{\mathsf{F}} \leftarrow \emptyset$

For every user $u \leftarrow 1, 2, \dots, \mathsf{U}$

If
$$\sum_{j=1}^{\mathsf{M}} \mathcal{N}_i^{\boldsymbol{x}_{j,u}^{\mathsf{R}}} < \bar{m} \text{ or } \sum_{j=1}^{\mathsf{M}} \mathcal{N}_i^{\boldsymbol{x}_{j,u}^{\mathsf{F}}} < \bar{m}$$

Return NO

Calculate
$$S_u^{\mathsf{R}} \leftarrow \bigcup_{j=1}^{\mathsf{M}} \psi_{\bar{m}}^{(i)} \left(\{ \boldsymbol{x}_{j,u}^{\mathsf{R}}(t) \}_{t=1}^{\mathsf{T}} \right)$$
 and

$$\mathcal{S}_{u}^{\mathsf{F}} \leftarrow \cup_{j=1}^{\mathsf{M}} \psi_{\bar{m}}^{(i)} \left(\{ \boldsymbol{x}_{j,u}^{\mathsf{F}}(t) \}_{t=1}^{\mathsf{T}} \right)$$

$$\operatorname{Do} \mathcal{S}^{\mathsf{R}} \leftarrow \mathcal{S}^{\mathsf{R}} \cup \mathcal{S}^{\mathsf{R}}_{t} \text{ and } \mathcal{S}^{\mathsf{F}} \leftarrow$$

Do
$$\mathcal{S}^{\mathsf{R}} \leftarrow \mathcal{S}^{\mathsf{R}} \cup \mathcal{S}_{u}^{\mathsf{R}}$$
 and $\mathcal{S}^{\mathsf{F}} \leftarrow \mathcal{S}^{\mathsf{F}} \cup \mathcal{S}_{u}^{\mathsf{F}}$

If IIDTESTER(
$$\mathcal{S}^{\mathsf{R}}, \mathcal{S}^{\mathsf{F}}, \delta, \varepsilon_1, \varepsilon_2, \bar{m}, n$$
) = NO

Return NO

Return YES

The mapping $\psi_k^{(i)}(\mathsf{Z}_1^q)$ is define as follows: we look at the first k visits to state i (i.e., at times $t=t_1,\ldots,t_k$ with $\mathsf{Z}_t=i$) and write down the corresponding transitions in Z_1^q , i.e., Z_{t+1} .

Sample complexity

Theorem 4 (Sample complexity of the sum closeness testing). There exists an absolute constant c > 0 such that, for any $0 \le \varepsilon_2 \le 1$ and $0 \le \varepsilon_1 \le c\varepsilon_2$, given

$$m = \mathcal{O}\left(\sqrt{\frac{n}{\varepsilon_2^4\delta\mathsf{U}}} + n\frac{\varepsilon_1^2}{\varepsilon_2^4} + n\frac{\varepsilon_1}{\varepsilon_2^2} + \frac{n^{2/3}}{\mathsf{U}\varepsilon_2^{4/3}}\right),$$

samples from each of $\{P_u\}_{u=1}^{\mathsf{U}}$ and $\{Q_u\}_{u=1}^{\mathsf{U}}$, Algorithm 1 distinguish between $\sum_{u=1}^{\mathsf{U}} \|P_u - Q_u\|_1 \leq \mathsf{U} \cdot \varepsilon_1$ and $\sum_{u=1}^{\mathsf{U}} \|P_u - Q_u\|_1 \geq \mathsf{U} \cdot \varepsilon_2$, with probability at least $1 - \delta$.

Theorem 5 (Auditing sample complexity). Given an $(\varepsilon_1, \varepsilon_2, \delta)$ i.i.d. tolerant-closeness-tester for n state distributions with the sample complexity of $m(n, \varepsilon_1, \varepsilon_2, \delta)$, then we can $(\varepsilon_1, \varepsilon_2, \delta)$ testing hypothesis (4) using,

$$\mathsf{T} = \mathcal{O}\left(\max_{u \in [\mathsf{U}]} \max_{\mathsf{W} \in \{\mathsf{Q}_u^\mathsf{F}, \mathsf{P}_u^\mathsf{R}\}} t_{\mathsf{cov}}^{\bar{m}}\left(\mathsf{M}; \mathsf{W}\right) \log \frac{\mathsf{U}}{\delta}\right),$$

samples per user.

Counterfactual regulation

Let S be a regulatory statement that an inspector (or, perhaps, the platform itself) wish to test. For example, S could be: "The platform should produce similar feeds, in the course of a given time horizon T, for users who are identical except for property \mathscr{P} ", where \mathscr{P} could be ethnicity, sexual orientation, gender, a combination of these factors, etc. Let $\mathcal{U}_{\mathscr{P}} \subset [\mathsf{U}] \times [\mathsf{U}]$ be a subset of pairs of users that comply with \mathscr{P} . Then, for any pair of users $(i,j) \in \mathcal{U}_{\mathscr{P}}$, the inspector's objective is to determine whether the platform's filtering algorithm cause user i's and user j's beliefs and actions to be significantly different.

Definition 7 (Counterfactual total variability). Let $\mathcal{U}_{\mathscr{P}} \subset [\mathsf{U}] \times [\mathsf{U}]$ be a subset of pairs of users that comply with \mathscr{P} . Then, for any pair of users $(i,j) \in \mathcal{U}_{\mathscr{P}}$, the total variability in algorithmic filtering behavior for counterfactual users is given by

$$\begin{split} \bar{\mathbb{V}}_{\mathsf{cu}}(\mathcal{S}, \mathcal{U}_{\mathscr{P}}) &\triangleq \frac{1}{|\mathcal{U}_{\mathscr{P}}|} \sum_{(i,j) \in \mathcal{U}_{\mathscr{P}}} \max_{\ell \in \mathcal{X}} \mathsf{d}_{\mathsf{TV}} \left(Q_{i}(\ell, \cdot), Q_{j}(\ell, \cdot) \right) \\ &= \frac{1}{|\mathcal{U}_{\mathscr{P}}|} \sum_{(i,j) \in \mathcal{U}_{\mathscr{P}}} \max_{\ell \in \mathcal{X}} \left\| \mathbf{Q}_{i}(\ell) - \mathbf{Q}_{j}(\ell) \right\|_{1} \\ &= \frac{1}{|\mathcal{U}_{\mathscr{P}}|} \sum_{(i,j) \in \mathcal{U}_{\mathscr{P}}} \left\| \mathbf{Q}_{i}^{F} - \mathbf{Q}_{j}^{F} \right\|_{\infty}. \end{split}$$

The investigator's task to test for violations in the following sense:

$$\mathcal{H}_0^{\mathcal{S}}: \bar{\mathbb{V}}_{\mathsf{cu}}(\mathcal{S}, \mathcal{U}_\mathscr{P}) \leq \varepsilon_1 \quad \text{ vs. } \quad \mathcal{H}_1^{\mathcal{S}}: \bar{\mathbb{V}}_{\mathsf{cu}}(\mathcal{S}, \mathcal{U}_\mathscr{P}) \geq \varepsilon_2.$$

Conclusions

The study presents an auditing method that tests for unexpected deviations in the user's decision-making process over a predefined time horizon. These deviations could be due to selective content filtering by the platform. We developed metrics for effectiveness and implementability methods with sample complexity guarantees.