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Overview

I Challenge: Selecting hyperparameters for Bayesian models
is hard and computationally expensive.

I Solution: Match moments of prior predictive distributions.
I Approach 1: Closed-form prior predictive moments

obtained from model analysis and the application of Laws
of total variation, total covariance and total expectation

I Approach 2: Black-box gradient-based optimization of
statistics derived from the prior predictive moment.

I Benefit: Immediate (fast) and good hyperparameters.

Method

1. Prior Predictive Distribution (PPD): Define the prior predictive distribution, which
integrates out the model parameters:

p(Y;λ) =
∫

p(Y|Z;λ)p(Z;λ)dZ,

where λ denotes the hyperparameters, Y represents the data, and Z represents the
latent variables and model parameters.

2. Virtual Statistics Calculation: Calculate virtual statistics T̂λ from the PPD (used to
inform or adjust the hyperparameters without direct reliance on the observed data).

3. Target Statistics: Determine target statistics T∗, which could be provided by domain
experts or estimated from a subset of the actual data. These statistics represent
expected values that the model should reproduce.

4. Solution: Find λ so that the virtual statistics derived from the PPD match the targets:
T∗ = T̂λ

5. Validation: Validate (with e.g. posterior predictive checks) whether the chosen
hyperparameters are appropriate, ensuring the model predictions align well with actual
data characteristics.

Black-box gradient-based optimization

1. Forward-sample Y from PPD to estimate T̂(E[g(Y);λ])
2. Obtain gradients∇λT̂(E[g(Y);λ]) using automatic differentiation
3. Optimize the hyperparameters λ so that the virtual statistics derived from the PPD

match the target statistics as closely as possible:
argminλ d(T∗, T̂λ)

The stochastic algorithm can be used for richer model families, but takes time, may fail
to converge and is more computationally expensive.
PMF example:
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Example: Poisson Matrix Factorization (PMF)

Importance: Bayesian Matrix Factorization (BMF) models are foundational in
applications like recommendation systems.

PMF model specficiation:
θik ∼ F(µθ, σ2

θ ), βjk ∼ F(µβ, σ2
β)

Yij ∼ Poisson

 K∑
k=1

θikβjk


Difficulty of selecting good priors:
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Virtual Statistics: derived from prior predictive distribution
E[Yij] = Kµθµβ, V[Yij] = K[µθµβ + (µβσθ)

2 + (µθσβ)
2 + (σθσβ)

2]

ρ1[Yij,Yil] =
K(Kµβσθ)2

V[Yij]
, ρ2[Yij,Ytj] =

K(Kµθσβ)2

V[Yij]

Target Statistics: E[Yij], V[Yij], ρ1, ρ2 provided by the user or estimated from data.

Solution for number of latent factors:

K =
τV[Yij]− E[Yij]

ρ1ρ2

(
E[Yij]

V[Yij]

)2

, τ = 1− (ρ1 + ρ2)

Performance compared to Bayesian Optimization (BO)
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BO runs (solid lines) vs the proposed method (dashed line)

Sensitivity to model misspecification: two examples
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Example: Compound Poisson Matrix Factorization (CPMF)

See the paper.
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