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Our position: „We argue that machine learning 
research is at a point where it should encourage 
or even welcome the publication of negative 
results.”
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Have I heard this before? Why it is worth to listen again.
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The struggle to embrace negative results in our community is nothing new – but remains unsolved.

Position: Embracing Negative Results in Machine Learning

Have we reached an optimal state 

wrt. dealing with negative results 

in our community?

Do we have a common understanding 

of the term “negative result”?

Should we care about negative results? 

What can we do next?



Common understanding of the term
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We differentiate between two types of negative results
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What is a negative results?

Definition 1: The usual null hypothesis of empirical machine
learning is that a proposed method does not exhibit
significantly better predictive performance than existing
methods on a relevant subset of problems.

Definition 2: A negative result in empirical machine learning
research occurs, when the usual null hypothesis can not be
rejected.

Definition 3: A positive result in empirical machine learning
research occurs when the usual null hypothesis is rejected.

Type 1: “Failure modes of 
existing methods”

Existing method negative results 
(EMNR) 

Type 2: “New methods that do 
not beat SotA”

Novel method negative results 
(NMNR) 

Sometimes published: Vanishing 
Gradients, Adversarials

Rarely published!



“Leaderboardism” is a problem in empirical machine learning.
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§ Metrics not necessarily aligned with impact

§ Publication bias and 𝜀-improvements lower 
trust in positive results

1.) Pure Predictive Performance Is a Faulty Metric for Scientific Progress

§ Researchers are incentivized to submit only very specific papers

§ Some Confounding variables like computing resources are emphasized

2.) A Hyper-Focus on Predictive Performance Sets Bad Incentives for Researchers

§ Fast-paced environment leads to parallel works – negative ones are not revealed

§ Pre-registration has not taken off in machine learning research

3.) Machine Learning Research Has Become Increasingly Inefficient

Machine learning for 
accuracy’s sake

Example: [Roberts et al., 2021]
examined 2,212 ML models to
detect/prognosticate COVID and
found none to be of clinical use.

Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, M., Ursprung, S., Aviles-Rivero, A. I., Etmann, C., McCague, C., Beer, L., et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for covid-19 using chest radiographs and ct scans. Nature Machine Intelligence, 3(3):199–217, 2021.
Varoquaux, G., & Cheplygina, V. (2022). Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ digital medicine, 5(1), 48.



What can we do next:
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How to Embrace Negative Results and Success Stories
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Special Issues / Conference Tracks / Workshops for Negative Results:

n Showcase important publications with negative results
n Implement this within subfields of machine learning
n Success Stories: “I Can’t Believe It’s Not Better!”-workshop, workshop on “Insights from Negative Results in NLP”

Encourage researchers to discuss negative results:

n Encourage submissions to talk about what didn’t work. Encourage ”challenge papers” to talk about failed attempts
n Success story: iWildCam challenge as part of the workshop on Fine-Grained Visual Categorization at CVPR 2022
n Encourage replication studies, include negative results in teaching.

Make conscious effort to adapt the review process:

n Minimum: Proper guidelines to reviewers (@Journals)

n Re-evaluate certain review criteria with respect to negative results (e.g., “obviousness” of results)? (@Reviewers)

n A structured way for researchers to declare already on submission that their work falls under the category of EMNR or NMNR (@researchers)

“I Can’t Believe It’s Not 
Better!”-workshop

@Neurips

Success Story



Counterfactuals
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Opposing positions to better facilitate discussion within the community

1) Publication of negative results lowers the overall quality of research in the field.

2) Knowing a method does not work in a specific setting has limited value. Knowing it does work in a specific setting is inherently of 
higher value.

3) New proxies for scientific worth of publications will emerge and a new bias is introduced into what is published.

4) Certain types of negative results are more likely to be published than others.



Our mandate for today: Ignite a discussion
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We have an opinion – but everyone here is a stakeholder in this discussion so we appreciate your input!
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What is your take on the matter? Feel encouraged to share your opinion here or later at our poster session. !!



Check out our paper.
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Link to Paper
Thank you for your attention!



Thank you for your attention! 

Approach us in the break or come to our poster session –
we would love to exchange and discuss ideas together.
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