

Modeling Long-term Time Series Forecasting with 1k Parameters

Shengsheng Lin¹, Weiwei Lin^{1,2,*}, Wentai Wu³, Haojun Chen¹, Junjie Yang¹

¹South China University of Technology ²Peng Cheng Laboratory ³Jinan University

(Cross-Period Sparse Forecasting technique

with *Linear* backbone)

1. Highlights

2. Motivations

3. Method

4. Results

- Requires fewer than 1k parameters
- 1~4 orders of magnitude smaller
 than its counterparts
- Competitive state-of-the-art predictive accuracy

2. Motivations

- 3. Method
- 4. Results
- 5. Inspirations

- Long-term Time Series Forecasting (LTSF):
 - **Extending forecast horizon** to its *maximum potential* (e.g., up to 720 steps)
 - ➤ Longer lookback windows are required for accurate predictions
 - Mainstream methods require hundreds of millions of parameters to achieve accuracy

2. Motivations

3. Method

4. Results

- Exhibit significant daily & weekly periodicity
- The realistic basis for long-term forecasting

2. Motivations

3. Method

4. Results

Downsampled subsequences

2. Motivations

- 3. Method
- 4. Results
- 5. Inspirations

Downsampled subsequences

- Subsequences exhibit similar or consistent trends
 - \triangleright Daily periodic patterns \rightarrow *Inter*-subsequence patterns
 - ightharpoonup Trend patterns ightharpoonup Trend patterns
- Subsequence prediction is considerably easier
 - > Simplifying into **cross-period trend prediction** task
 - > Extremely **compressing** parameter scale

(Cross-Period Sparse Forecasting technique with Linear backbone)

- 1. Highlights
- 2. Motivations
- 3. Method
- 4. Results
- 5. Inspirations

- L: Lookback window length
- *H*: Forecasting horizon
- w: Period length

•
$$n = \left| \frac{L}{w} \right|$$
: Subsequences lookback

•
$$m = \left| \frac{H}{w} \right|$$
: Subsequences horizon

(Cross-Period Sparse Forecasting technique with Linear backbone)

- 1. Highlights
- 2. Motivations
- 3. Method
- 4. Results
- 5. Inspirations

$$x'_{t-L+1:t} = x_{t-L+1:t} + \text{Conv1D}(x_{t-L+1:t})$$

Aggregating information within period

Mitigating the impact of outliers

(Cross-Period Sparse Forecasting technique with Linear backbone)

- 1. Highlights
- 2. Motivations
- 3. Method
- 4. Results
- 5. Inspirations

$$X = \text{Downsample } (x'_{t-L+1:t})$$
 $X = \text{Reshape } (x'_{t-L+1:t}, (n, w))^{\top}$

* Quickly implementing Downsampling through matrix Reshape and Transpose

(Cross-Period Sparse Forecasting technique with Linear backbone)

- 1. Highlights
- 2. Motivations
- 3. Method
- 4. Results
- 5. Inspirations

$$Y = Linear(X)$$

Parameter-sharing for each subsequence, thus requiring only $n \times m$ parameters

(Cross-Period Sparse Forecasting technique with Linear backbone)

- 1. Highlights
- 2. Motivations
- 3. Method
- 4. Results
- 5. Inspirations

$$\bar{x}_{t+1:t+H} = \text{Upsample}(Y)$$
 $\bar{x}_{t+1:t+H} = \text{Reshape}(Y^{\top}, (H))$

* Quickly implementing Upsampling through matrix Reshape and Transpose

2. Motivations

3. Method

4. Results

5. Inspirations

Intuitive Workflow: Cross-Period Sparse Forecasting on Time Axis

Dataset	ETTh1			ETTh2			Electricity				Traffic					
Horizon	96	192	336	720	96	192	336	720	96	192	336	720	96	192	336	720
Informer (2021)	0.865	1.008	1.107	1.181	3.755	5.602	4.721	3.647	0.274	0.296	0.300	0.373	0.719	0.696	0.777	0.864
Autoformer (2021)	0.449	0.500	0.521	0.514	0.358	0.456	0.482	0.515	0.201	0.222	0.231	0.254	0.613	0.616	0.622	0.660
Pyraformer (2022b)	0.664	0.790	0.891	0.963	0.645	0.788	0.907	0.963	0.386	0.386	0.378	0.376	2.085	0.867	0.869	0.881
FEDformer (2022b)	0.376	0.420	0.459	0.506	0.346	0.429	0.496	0.463	0.193	0.201	0.214	0.246	0.587	0.604	0.621	0.626
FiLM (2022a)	0.371	0.414	0.442	0.465	0.284	0.357	0.377	0.439	0.154	0.164	0.188	0.236	0.416	0.408	0.425	0.520
TimesNet (2023)	0.384	0.436	0.491	0.521	0.340	0.402	0.452	0.462	0.168	0.184	0.198	0.220	0.593	0.617	0.629	0.640
PatchTST (2023)	0.370	0.413	0.422	0.447	0.274	0.341	0.329	0.379	0.129	0.147	0.163	0.197	0.360	0.379	0.392	0.432
DLinear (2023)	0.374	0.405	0.429	0.440	0.338	0.381	0.400	0.436	0.140	0.153	0.169	0.203	0.410	0.423	0.435	0.464
FITS (2024)	0.375	0.408	0.429	0.427	0.274	0.333	0.340	0.374	0.138	0.152	0.166	0.205	0.401	0.407	0.420	0.456
SparseTSF (ours)	0.359	0.397	0.404	0.417	0.267	0.314	0.312	0.370	0.138	0.146	0.164	0.203	0.382	0.388	0.402	0.445
Sparse 151 (Ours)	± 0.006	± 0.002	± 0.001	± 0.001	± 0.005	± 0.003	± 0.004	± 0.001	± 0.002							

+0.017

3. Method

1. Highlights

2. Motivations

Imp.

4. Results

5. Inspirations

+0.018

+0.007

+0.019

+0.011 +0.008

Model	Parameters	MACs	Max Mem.(MB)	Epoch Time(s)		
Informer (2021)	12.53 M	3.97 G	969.7	70.1		
Autoformer (2021)	12.22 M	4.41 G	2631.2	107.7		
FEDformer (2022b)	17.98 M	4.41 G	1102.5	238.7		
FiLM (2022a)	12.22 M	4.41 G	1773.9	78.3		
PatchTST (2023)	6.31 M	11.21 G	10882.3	290.3		
DLinear (2023)	485.3 K	156.0 M	123.8	25.4		
FITS (2024)	10.5 K	79.9 M	496.7	35.0		
SparseTSF (Ours)	0.92 K	12.71 M	125.2	31.3		

-0.001

-0.006

-0.022

-0.009

-0.010

-0.013

+0.001

Required parameters:

$$\left\lfloor \frac{L}{w} \right\rfloor \times \left\lfloor \frac{H}{w} \right\rfloor + 2 \times \left\lfloor \frac{w}{2} \right\rfloor + 1$$
Linear part Conv1D part

• 1~2 orders of magnitude smaller than FITS (another lightweight model for LTSF):

Model	Sp	arseTS	SF (Ou	rs)	FITS (2024)				
Look-back Horizon	96	192	336	720	96	192	336	720	
96	41	57	81	145	840	1,218	2,091	5,913	
192	57	89	137	265	1,260	1,624	2,542	6,643	
336	81	137	221	445	1,890	2,233	3,280	7,665	
720	145	265	445	925	3,570	3,857	5,125	10,512	

Number of parameters

1. Highlights

2. Motivations

3. Method

4. Results

Equivalent weights of SparseTSF:

$$weight' = SparseTSF(\begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix})^{\top}$$

3. Method

1. Highlights

2. Motivations

4. Results

- Linear model can capture enough periodic patterns
 - SparseTSF *learns better* (i.e., more distinct stripes)
- SparseTSF pays more attention to proper historical items

Generalization Ability

Dataset		ETTh2 -	→ ETTh1	l	$ Electricity \rightarrow ETTh1 $				
Horizon	96	192	336	720	96	192	336	720	
Informer (2021)	0.844	0.921	0.898	0.829	<u> </u>	\	\		
Autoformer (2021)	0.978	1.058	0.944	0.921	\	\	\	\	
FEDformer (2022b)	0.878	0.927	0.939	0.967	\	\	\	\	
FiLM (2022a)	0.876	0.904	0.919	0.925	\	\	\	\	
PatchTST (2023)	0.449	0.478	0.482	0.476	0.400	0.424	0.475	0.472	
DLinear (2023)	0.430	0.478	0.458	0.506	0.397	0.428	0.447	0.470	
Fits (2024)	0.419	0.427	0.428	0.445	0.380	0.414	0.440	0.448	
SparseTSF (Ours)	0.370	0.401	0.412	0.419	0.373	0.409	0.433	0.439	

4. Results

3. Method

1. Highlights

2. Motivations

- On different datasets with the same length of periodicity
- SparseTSF demonstrates *robust* generalization performance
- Highly beneficial for scenarios with small samples, or low-quality data

2. Motivations

- 3. Method
- 4. Results
- 5. Inspirations

- Periodicity is fundamental for long-term time series forecasting
- Avoid overestimating the complexity of current datasets
- We advocate for simplifying model design
- Future research should explore techniques to better leveraging the periodicity

Thank You!

Poster location: Hall C 4-9 #309

Contact me: linss2000@foxmail.com

