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⚫ Requires fewer than 1k parameters

⚫ 1∼4 orders of magnitude smaller 

than its counterparts

⚫ Competitive state-of-the-art 

predictive accuracy
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SparseTSF 

(Cross-Period Sparse Forecasting technique 

with Linear backbone)
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⚫ Long-term Time Series Forecasting (LTSF):

SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters (ICML 2024 Oral)

3

Historical two weeks 

(336 steps)

Predicted two week 

(336 steps)Forecasting
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➢ Extending forecast horizon to its maximum potential (e.g., up to 720 steps)

➢ Longer lookback windows are required for accurate predictions

➢ Mainstream methods require hundreds of millions of parameters to achieve accuracy
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Day Week

⚫ Exhibit significant daily & weekly periodicity

⚫ The realistic basis for long-term forecasting
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Resampling with daily interval
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Downsampled subsequences
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⚫ Subsequences exhibit similar or consistent trends

Downsampled subsequences

⚫ Subsequence prediction is considerably easier

➢ Daily periodic patterns → Inter-subsequence patterns

➢ Trend patterns → Intra-subsequence patterns

➢ Simplifying into cross-period trend prediction task

➢ Extremely compressing parameter scale
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SparseTSF 

(Cross-Period Sparse Forecasting technique with Linear backbone)

⚫ 𝐿: Lookback window length

⚫ 𝐻: Forecasting horizon

⚫ 𝑤: Period length

⚫ 𝑛 =
𝐿

𝑤
: Subsequences lookback

⚫ 𝑚 =
𝐻

𝑤
: Subsequences horizon
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Downsample UpsampleAggregate

𝑥𝑡−𝐿+1:𝑡 ∈ ℝ
𝐿 𝑥′𝑡−𝐿+1:𝑡 ∈ ℝ

𝐿 𝑿 ∈ ℝ𝑤×𝑛 𝒀 ∈ ℝ𝑤×𝑚 ҧ𝑥𝑡+1:𝑡+𝐻 ∈ ℝ𝐻

by period w by period wwithin period w

Aggregating & Downsampling Upsampling

Parameter-sharing

Linear Layer
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SparseTSF 

(Cross-Period Sparse Forecasting technique with Linear backbone)

Mitigating the impact of outliers

Aggregating information within period

𝑥𝑡−𝐿+1:𝑡
′ = 𝑥𝑡−𝐿+1:𝑡 + Conv1D (𝑥𝑡−𝐿+1:𝑡)
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SparseTSF 

(Cross-Period Sparse Forecasting technique with Linear backbone)

𝑿 = Downsample (𝑥𝑡−𝐿+1:𝑡
′ ) 𝑿 = Reshape (𝑥𝑡−𝐿+1:𝑡

′ , (𝑛, 𝑤))⊤

* Quickly implementing Downsampling through matrix Reshape and Transpose
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SparseTSF 

(Cross-Period Sparse Forecasting technique with Linear backbone)

𝒀 =  Linear (𝑿)

Parameter-sharing for each subsequence, thus 

requiring only 𝒏 ×𝒎 parameters
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SparseTSF 

(Cross-Period Sparse Forecasting technique with Linear backbone)

ҧ𝑥𝑡+1:𝑡+𝐻 = Upsample (𝒀) ҧ𝑥𝑡+1:𝑡+𝐻 = Reshape (𝒀⊤, (𝐻))

* Quickly implementing Upsampling through matrix Reshape and Transpose
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Intuitive Workflow:  Cross-Period Sparse Forecasting on Time Axis
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Time

𝑥𝑡−𝐿:𝑡 ҧ𝑥𝑡:𝑡+𝐻
Forecasting

Sliding Aggregation

Sliding Forecasting

Constant Period 𝑤
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Comparable to 

State-of-the-Art 

with Less Than 

1,000 Parameters
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⚫ Required parameters:

𝐿

𝑤
×

𝐻

𝑤
+ 2 ×

𝑤

2
+ 1

Linear part Conv1D part

⚫ 1∼2 orders of magnitude smaller than FITS (another lightweight model for LTSF):

Number of parameters
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Equivalent weights of SparseTSF:

ETTh1

Traffic

⚫ Linear model can capture enough 

periodic patterns

⚫ SparseTSF learns better (i.e., 

more distinct stripes)

⚫ SparseTSF pays more attention 

to proper historical items

SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters (ICML 2024 Oral)
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Generalization Ability

⚫ On different datasets with the same length of periodicity

⚫ SparseTSF demonstrates robust generalization performance

⚫ Highly beneficial for scenarios with small samples, or low-quality data

SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters (ICML 2024 Oral)
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⚫ Periodicity is fundamental for long-term time series forecasting

⚫ Avoid overestimating the complexity of current datasets

⚫ We advocate for simplifying model design

⚫ Future research should explore techniques to better leveraging the periodicity

ETTh1 Electricity Traffic

SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters (ICML 2024 Oral)
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Contact me: linss2000@foxmail.com

CodePaper

Poster location: Hall C 4-9 #309

Thank You!
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