Scalable Al Safety via Doubly-Efficient Debate

Jonah Brown-Cohen, Geoffrey Irving, Georgios Piliouras

Training Compute

Notable AI Models # EPOCH AI

Current Paradigm

The model The training signal

Scalable AI Safety?

- Need methods to amplify the training signal to provide accurate supervision that scales to superhuman Als.
- Motivation from computational complexity theory:

It is easier to verify a solution than to find one.

$$P \neq NP$$

Prior work: AI Safety via Debate¹

- Human judges a debate between two powerful Als
- Motivation from computational complexity theory:

Two debaters understand the full tree of relevant information, human verifies just one path down the tree.

Debate = PSPACE

I. Irving, Geoffrey, Paul Christiano, and Dario Amodei. "Al safety via debate." arXiv preprint arXiv:1805.00899 (2018).

AI Safety via Debate

I could reverse the "one way" hash function Bitcoin relies on.

No you can't, you're lying to trick Bob. You couldn't describe the algorithm.

That doesn't work - centriphylation will fail 5% of the time, and you'd need to run centriphylation thousands of times, so the chance of success is near-zero.

My centriphylation algorithm works 100% of the time.

Attachment: inputs.txt

The code is safe and can be run.

The code didn't work. Right wins.

Challenge 1 Human Judgement is Noisy

Need to allow for **stochastic** human judgements.

Challenge 2 Human Judgement is Expensive

Need tight quantitative bounds on **precise number of queries** to human judgement.

Challenge 3

Debaters are not Computationally Unbounded

The honest strategy in the debate should be efficiently computable

Challenge 4

It should be harder to lie, than to refute a lie

The honest strategy in the debate should defeat any (even computationally unbounded) dishonest strategy

Our Contribution: Doubly-Efficient Debate

New Debate Protocols

- Stochasticity Human judgement can be stochastic
- Verifier efficiency Only require a constant number of human verifier judgements
- 3. Honest debater efficiency Honesty requires compute comparable to direct solution
- 4. It is harder to lie, than to refute a lie –
 Honest strategy wins, even when dishonest
 debater is computationally unbounded

Our Contribution: Doubly-Efficient Debate

Informal Theorem

For any problem solvable by a probabilistic algorithm in time T there is a debate protocol where

- The honest strategy can be executed in time O(T logT)
- Only O(1) queries to human judgement are made
- The honest strategy wins with significantly higher probability, even against a computationally unbounded dishonest strategy

- 1. New model for doing theory
- 2. New qualitative prescriptions for practical debates between LLMs

Warm-up Doubly-Efficient Debate Protocol

For time T program M decide if M(x)=1

Checks that **all program states appearing are valid**, and that the last two program states output by A correspond to a **single step of M**.

Verifier checks each of the *O(log T)* program states.

Future work

Theoretical

- Obfuscated arguments a debater can try to lie without knowing where the flaw in the argument is
- Bias in human judgements debaters may take advantage of questions that human judges systematically get wrong

Empirical

- Experiments on debates with LLMs
- Try to use theory to inform practice and vice versa

