Probabilistic Generating Circuits - Demystified

Sanyam Agarwal and Markus Bläser

Saarland University

[Probabilistic Generating Circuits - Demystified](#page-41-0)

4 E N 4 E N

 -1 -1 $+$

 $2Q$

€

Probabilistic Inference

Probabilistic models should:

- ▶ Allow for efficient probabilistic inference.
- ▶ Represent as many classes of distributions as possible

 $2Q$

Probabilistic Inference

Probabilistic models should:

- ▶ Allow for efficient probabilistic inference.
- ▶ Represent as many classes of distributions as possible

But *n* binary random \implies 2ⁿ assignments.

 $2Q$

Probabilistic Inference

Probabilistic models should:

- ▶ Allow for efficient probabilistic inference.
- ▶ Represent as many classes of distributions as possible

But *n* binary random \implies 2ⁿ assignments.

Tradeoff between expressiveness and tractability. [\[Rot96\]](#page-40-1).

- ▶ Determinantal Point Processes (DPPs)
	- Characterized by a PSD matrix.
	- Model negative dependencies.

4 E 6 4 E 6

4 0 8

 $2Q$

€

- ▶ Determinantal Point Processes (DPPs)
	- Characterized by a PSD matrix.
	- Model negative dependencies.
- ▶ Probabilistic Circuits (PCs)
	- Store probability mass functions.
	- **Only** allow positive weights.

- ▶ Determinantal Point Processes (DPPs)
	- Characterized by a PSD matrix.
	- Model negative dependencies.
- ▶ Probabilistic Circuits (PCs)
	- Store probability mass functions.
	- **Only** allow positive weights.
	- * Power is incomparable to DPPs. [\[ZHV20\]](#page-40-2)

- ▶ Determinantal Point Processes (DPPs)
	- Characterized by a PSD matrix.
	- Model negative dependencies.
- ▶ Probabilistic Circuits (PCs)
	- Store probability mass functions.
	- **Only** allow positive weights.
	- * Power is incomparable to DPPs. [\[ZHV20\]](#page-40-2)
- ▶ Probabilistic Generating Circuits (PGCs)
	- Store probability generating polynomial.
	- Allow for negative weights.

- ▶ Determinantal Point Processes (DPPs)
	- Characterized by a PSD matrix.
	- Model negative dependencies.
- ▶ Probabilistic Circuits (PCs)
	- Store probability mass functions.
	- **Only** allow positive weights.
	- * Power is incomparable to DPPs. [\[ZHV20\]](#page-40-2)
- ▶ Probabilistic Generating Circuits (PGCs)
	- Store probability generating polynomial.
	- Allow for negative weights.
	- * PGCs tractably subsume both PCs and DPPs. [\[ZJV21\]](#page-40-3)

- ▶ Determinantal Point Processes (DPPs)
	- Characterized by a PSD matrix.
	- Model negative dependencies.
- ▶ Probabilistic Circuits (PCs)
	- Store probability mass functions.
	- **Only** allow positive weights.
	- * Power is incomparable to DPPs. [\[ZHV20\]](#page-40-2)
- ▶ Probabilistic Generating Circuits (PGCs)
	- Store probability generating polynomial.
	- Allow for negative weights.
	- * PGCs tractably subsume both PCs and DPPs. [\[ZJV21\]](#page-40-3)

Motivation for our work

- Where does this power of PGCs comes from?

- ▶ Determinantal Point Processes (DPPs)
	- Characterized by a PSD matrix.
	- Model negative dependencies.
- ▶ Probabilistic Circuits (PCs)
	- Store probability mass functions.
	- **Only** allow positive weights.
	- * Power is incomparable to DPPs. [\[ZHV20\]](#page-40-2)
- ▶ Probabilistic Generating Circuits (PGCs)
	- Store probability generating polynomial.
	- Allow for negative weights.
	- * PGCs tractably subsume both PCs and DPPs. [\[ZJV21\]](#page-40-3)

Motivation for our work

- Where does this power of PGCs comes from?
- How powerful they truly are?

メロメ メタメ メミメ メミメ

 Ω

Source of power of PGCs*

The power of PGCs comes from negative weights, as PCs with negative weights (nonmonotone PCs) subsume PGCs.

4 0 8

 $2Q$

Source of power of PGCs*

The power of PGCs comes from negative weights, as PCs with negative weights (*nonmonotone PCs*) subsume PGCs.

Extent of power of PGCs*

Efficient marginalization over PGCs representing distributions with more than two categories implies $P = NP$.

Source of power of PGCs*

The power of PGCs comes from negative weights, as PCs with negative weights (*nonmonotone PCs*) subsume PGCs.

Extent of power of PGCs*

Efficient marginalization over PGCs representing distributions with more than two categories implies $P = NP$.

Power of nonmonotone PCs

Nonmonotone PCs computing set-multilinear polynomials support tractable marginalization over categorical variables of an arbitrary image size.

*Proven independently in [\[BZV24\]](#page-40-4).

イロメ イタメ オラメイラメ

∽≏ດ

[References](#page-40-0)

DPP example

$$
L = \begin{array}{cccccc}\nX_1 & X_2 & X_3 \\
4 & 1 & 3 & X_1 \\
1 & 5 & 2 & X_2 \\
3 & 2 & 8 & X_3\n\end{array}
$$

$$
\mathit{Pr}(X_1 = 0, X_2 = 1, X_3 = 1)
$$

[Probabilistic Generating Circuits - Demystified](#page-0-0)

メロメメ 倒 メメミメメ ミメー 差し

 299

DPP example

$$
L = \begin{array}{ccc} X_1 & X_2 & X_3 \\ 4 & 1 & 3 & X_1 \\ 1 & 5 & 2 & X_2 \\ 3 & 2 & 8 & X_3 \end{array} \qquad Pr(X_1 = 0, X_2 = 1, X_3 = 1)
$$

Normalization Constant = $det(L + I) = 199$

[Probabilistic Generating Circuits - Demystified](#page-0-0)

メロメ メ御 メメ ミメメ ミメー

目

 299

DPP example

Normalization Constant = $det(L + I) = 199$

Allow tractable marginalization by storing probabilities as determinants of submatrices.

[Probabilistic Generating Circuits - Demystified](#page-0-0)

重

母 ▶ イヨ ▶ イヨ ▶ │

 $2Q$

 \leftarrow

È

后 **B** 299

Marginalisation is tractable if PC is decomposable and smooth.

È

后

 299

 \leftarrow \Box

[Probabilistic Generating Circuits - Demystified](#page-0-0)

重

 299

[Probabilistic Generating Circuits - Demystified](#page-0-0)

 299

[References](#page-40-0)

Separation between PCs and PGCs

Theorem

PGCs over binary variables can be simulated by nonmonotone PCs with only polynomial overhead in size.

4 E 6 4 E 6

4 0 8

 $2Q$

Separation between PCs and PGCs

Theorem

PGCs over binary variables can be simulated by nonmonotone PCs with only polynomial overhead in size.

Proof Idea.

 \blacktriangleright Let a PGC compute $f(z_1, ..., z_n)$. Define the polynomial g as

$$
g(x_1, \overline{x_1}, ..., x_n, \overline{x_n}) = f(\frac{x_1}{\overline{x_1}}, \frac{x_2}{\overline{x_2}}, ..., \frac{x_n}{\overline{x_n}}) \cdot \prod_{i=1}^n \overline{x_i}.
$$

Separation between PCs and PGCs

Theorem

PGCs over binary variables can be simulated by nonmonotone PCs with only polynomial overhead in size.

Proof Idea.

 \blacktriangleright Let a PGC compute $f(z_1, ..., z_n)$. Define the polynomial g as

$$
g(x_1, \overline{x_1}, ..., x_n, \overline{x_n}) = f(\frac{x_1}{\overline{x_1}}, \frac{x_2}{\overline{x_2}}, ..., \frac{x_n}{\overline{x_n}}) \cdot \prod_{i=1}^n \overline{x_i}.
$$

 \blacktriangleright g would be *multilinear* and *homogenous* with $deg(g) = n$ \blacktriangleright Multiplicative term only increases size of g by $O(n)$.

∽≏ດ

Separation between PCs and PGCs

Theorem

PGCs over binary variables can be simulated by nonmonotone PCs with only polynomial overhead in size.

Proof Idea.

 \blacktriangleright Let a PGC compute $f(z_1, ..., z_n)$. Define the polynomial g as

$$
g(x_1, \overline{x_1}, ..., x_n, \overline{x_n}) = f(\frac{x_1}{\overline{x_1}}, \frac{x_2}{\overline{x_2}}, ..., \frac{x_n}{\overline{x_n}}) \cdot \prod_{i=1}^n \overline{x_i}.
$$

- \blacktriangleright g would be multilinear and homogenous with $deg(g) = n$
- Multiplicative term only increases size of g by $O(n)$.
- ▶ To remove division gates, use [\[Str73\]](#page-40-5)'s result to eliminate them in polynomial overhead.

Theorem

Efficient marginalization over PGCs involving quaternary random variables implies that $NP = P$.

4 E 6 4 E 6

4 0 1

 $2Q$

€

Theorem

Efficient marginalization over PGCs involving quaternary random variables implies that $NP = P$.

Proof Idea.

 \triangleright #PM in 3-regular bipartite graph G is #P-Hard. [\[DL92\]](#page-40-6)

AD > -4 E > -4 E >

Theorem

Efficient marginalization over PGCs involving quaternary random variables implies that $NP = P$.

Proof Idea.

- \triangleright #PM in 3-regular bipartite graph G is #P-Hard. [\[DL92\]](#page-40-6)
- ▶ Using G, we construct a PGC $C = \prod_{i=1}^{n} \sum_{j \in N(i)} E_{i,j} V_j$.
- \blacktriangleright Each V_i appears thrice, hence acts as quaternary variable.

AD - 4 E - 4 E

Theorem

Efficient marginalization over PGCs involving quaternary random variables implies that $NP = P$.

Proof Idea.

- \triangleright #PM in 3-regular bipartite graph G is #P-Hard. [\[DL92\]](#page-40-6)
- ▶ Using G, we construct a PGC $C = \prod_{i=1}^{n} \sum_{j \in N(i)} E_{i,j} V_j$.
- \blacktriangleright Each V_i appears thrice, hence acts as quaternary variable.
- ▶ Number of monomials in coefficient of $V_1 \cdot V_2 \cdot ... \cdot V_n$ gives us number of perfect matchings in G.

4 桐 ト 4 手 ト 4 手

Theorem

Efficient marginalization over PGCs involving quaternary random variables implies that $NP = P$.

Proof Idea.

- \triangleright #PM in 3-regular bipartite graph G is #P-Hard. [\[DL92\]](#page-40-6)
- ▶ Using G, we construct a PGC $C = \prod_{i=1}^{n} \sum_{j \in N(i)} E_{i,j} V_j$.
- \blacktriangleright Each V_i appears thrice, hence acts as quaternary variable.
- ▶ Number of monomials in coefficient of $V_1 \cdot V_2 \cdot ... \cdot V_n$ gives us number of perfect matchings in G.

Remark: Similar result follows for ternary variables, if we allow marginalization over subsets of images.

Tractable marginalization in nonmonotone PCs

Theorem

Let C be a nonmonotone PC of size s computing a probability distribution over categorical random variables X_1, \ldots, X_n such that the polynomial P computed by C is set-multilinear. Then we can marginalize in linear time.

Tractable marginalization in nonmonotone PCs

Theorem

Let C be a nonmonotone PC of size s computing a probability distribution over categorical random variables X_1, \ldots, X_n such that the polynomial P computed by C is set-multilinear. Then we can marginalize in linear time.

▶ Definition (Set-multilinear): Let $V = Y_1 \sqcup Y_2 \sqcup ... \sqcup Y_k$. A polynomial p on a set of variables V is set multilinear, if every monomial of p contains exactly one variable from each Y_i for all *i*.

n a *c*

Tractable marginalization in nonmonotone PCs

Theorem

Let C be a nonmonotone PC of size s computing a probability distribution over categorical random variables X_1, \ldots, X_n such that the polynomial P computed by C is set-multilinear. Then we can marginalize in linear time.

- ▶ Definition (Set-multilinear): Let $V = Y_1 \sqcup Y_2 \sqcup ... \sqcup Y_k$. A polynomial p on a set of variables V is set multilinear, if every monomial of p contains exactly one variable from each Y_i for all *i*.
- ▶ Each X_i represented by partition $z_{i,0},...,z_{i,d-1}$ which are inputs to C.

オター・エー・エー

∽≏ເ

Connection with DPPs

▶ While PGCs subsume DPPs, a related question is: What happens to the power of DPPs under simple pre- and post-processing?

個→ イミ ▶ イミ ▶

 $2Q$

∍

a mille

Connection with DPPs

 \triangleright While PGCs subsume DPPs, a related question is: What happens to the power of DPPs under simple pre- and post-processing?

 \triangleright We show that this question is **Hard** to answer.

Theorem

Any arithmetic formula can be represented as an affine projection of a DPP.

Interpretation: If there is a PGC that cannot be written as affine projection of a DPP, then we separate algebraic formulas and circuits.

オター・オティ オティ

∽≏ດ

Summary

▶ Power of PGCs comes from negative weights.

 \sim

a Basa B

 $2Q$

€

a mille

Summary

- ▶ Power of PGCs comes from negative weights.
- ▶ PGCs allow efficient marginalisation only for binary variables.

 $2Q$

Summary

- ▶ Power of PGCs comes from negative weights.
- \triangleright PGCs allow efficient marginalisation only for binary variables.
- ▶ Difficult to establish connection between PGCs and DPPs under pre and post-processing.

Summary

- ▶ Power of PGCs comes from negative weights.
- \triangleright PGCs allow efficient marginalisation only for binary variables.
- ▶ Difficult to establish connection between PGCs and DPPs under pre and post-processing.

Future Directions

▶ Are there efficient marginalisation algorithms for categorical distributions which are not set-multilinear?

∽≏ດ

Summary

- ▶ Power of PGCs comes from negative weights.
- \triangleright PGCs allow efficient marginalisation only for binary variables.
- ▶ Difficult to establish connection between PGCs and DPPs under pre and post-processing.

Future Directions

- ▶ Are there efficient marginalisation algorithms for categorical distributions which are not set-multilinear?
- ▶ What is the most general class of models that represents tractable distributions?

Alban Alba

∽≏ດ

References

- [BZV24] O. Broadrick, H. Zhang, and G. Van den Broeck. "Polynomial Semantics of Tractable Probabilistic Circuits". In: UAI (2024).
- [DL92] P. Dagum and M. Luby. "Approximating the permanent of graphs with large factors". In: TCS (1992).
- [Rot96] D. Roth. "On the hardness of approximate reasoning". In: AI (1996).
- [Str73] V. Strassen. "Vermeidung von Divisionen". In: Journal für die reine und angewandte Mathematik (1973).
- [ZHV20] H. Zhang, S. Holtzen, and G. Van den Broeck. "On the Relationship Between Probabilistic Circuits and Determinantal Point Processes". In: UAI. 2020.
- [ZJV21] H. Zhang, B. Juba, and G. Van Den Broeck. "Probabilistic Generating Circuits". In: ICML[.](#page-39-0) 2[02](#page-41-0)[1](#page-39-0)[.](#page-40-0)

 Ω

Thank You!

Questions?

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |