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Probabilistic Inference

Probabilistic models should:
> Allow for efficient probabilistic inference.
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Probabilistic Inference

Probabilistic models should:
> Allow for efficient probabilistic inference.
> Represent as many classes of distributions as possible
But n binary random = 2" assignments.

Tradeoff between expressiveness and tractability. [Rot96].
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Examples of tractable models

» Determinantal Point Processes (DPPs)
- Characterized by a PSD matrix.
- Model negative dependencies.
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Examples of tractable models

» Determinantal Point Processes (DPPs)

- Characterized by a PSD matrix.

- Model negative dependencies.
> Probabilistic Circuits (PCs)

- Store probability mass functions.

- Only allow positive weights.

* Power is incomparable to DPPs. [ZHV20]
> Probabilistic Generating Circuits (PGCs)

- Store probability generating polynomial.

- Allow for negative weights.
* PGCs tractably subsume both PCs and DPPs. [ZJV21]

Motivation for our work

- Where does this power of PGCs comes from?
- How powerful they truly are?
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Source of power of PGCs*

The power of PGCs comes from negative weights, as PCs
with negative weights (nonmonotone PCs) subsume PGCs.
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Source of power of PGCs*

The power of PGCs comes from negative weights, as PCs
with negative weights (nonmonotone PCs) subsume PGCs.

Extent of power of PGCs*

Efficient marginalization over PGCs representing distributions
with more than two categories implies P = NP.

Power of nonmonotone PCs

Nonmonotone PCs computing set-multilinear polynomials
support tractable marginalization over categorical variables
of an arbitrary image size.

*Proven independently in [BZV24].
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DPP example

Xi Xo X5

L = 4 1 3 Xl PF(X1207X2:17X3:1)
1 5 2 X
3 2 8 X
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DPP example

X1 Xo X; Pr(X; =0,X =1,X; =1)
L 4 1 3 X;

1 5 2 X

3 2 8 X3 X '5 2’

2 8

Normalization Constant = det(L + /) = 199
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DPP example

X1 Xo Xz Pr(Xl =0,X=1,X;= 1)
L 4 1 3 X
1 5 2 X
3 2 8 X3 X '5 2‘

2 8

Normalization Constant = det(L + /) = 199

Allow tractable marginalization by storing probabilities as de-
terminants of submatrices.
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PC and PGC example

lo | 1o 1, o1
f= 6X1X2+§X1X2+6X1X2+§X1X2
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PC and PGC example

Marginalisation is
tractable if PC is de-
composable and smooth.
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PC and PGC example

X1 Xy X2 Xo 1 Z1 Z
1,1 1 1
Marginalisation is f=gtsntsatiaz
tractable if PC is de-
composable and smooth.
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PC and PGC example

Marginalisation is Tractable  marginaliza-
tractable if PC is de- tion for binary variables.
composable and smooth.
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Separation between PCs and PGCs

PGCs over binary variables can be simulated by nonmonotone
PCs with only polynomial overhead in size.
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Separation between PCs and PGCs

PGCs over binary variables can be simulated by nonmonotone
PCs with only polynomial overhead in size.

Proof Idea.
» Let a PGC compute f(z,...,z,) . Define the polynomial g as

n
X1 X X,
g(X17717 "’7Xn77n) - f(:17 :27 ceey :”) : HYI
X1 X2 Xn i1
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> Multiplicative term only increases size of g by O(n).
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Separation between PCs and PGCs

PGCs over binary variables can be simulated by nonmonotone
PCs with only polynomial overhead in size.

Proof Idea.
» Let a PGC compute f(z,...,z,) . Define the polynomial g as

n
X1 X X,
g(X17717 "’7Xn77n) - f(:17 :27 ceey :") : HYI
X1 X2 Xn i1

» g would be multilinear and homogenous with deg(g) = n
> Multiplicative term only increases size of g by O(n).

» To remove division gates, use [Str73]'s result to eliminate
them in polynomial overhead.
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Non-binary marginalization is hard for PGCs

Efficient marginalization over PGCs involving quaternary ran-
dom variables implies that NP = P.
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» #PM in 3-regular bipartite graph G is #P-Hard. [DL92]
> Using G, we construct a PGC C = [\, > ;cneiy Eij V-
» Each V; appears thrice, hence acts as quaternary variable.
>

Number of monomials in coefficient of Vi - V, - ... -V, gives us
number of perfect matchings in G.

O
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Non-binary marginalization is hard for PGCs

Efficient marginalization over PGCs involving quaternary ran-
dom variables implies that NP = P.

Proof Idea.
» #PM in 3-regular bipartite graph G is #P-Hard. [DL92]
> Using G, we construct a PGC C = [\, > ;cneiy Eij V-
» Each V; appears thrice, hence acts as quaternary variable.
>

Number of monomials in coefficient of Vi - V, - ... -V, gives us
number of perfect matchings in G.

O

Remark: Similar result follows for ternary variables, if we
allow marginalization over subsets of images.
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Tractable marginalization in nonmonotone PCs

Let C be a nonmonotone PC of size s computing a probability
distribution over categorical random variables Xy, ..., X, such
that the polynomial P computed by C is set-multilinear. Then
we can marginalize in linear time.
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Tractable marginalization in nonmonotone PCs

Let C be a nonmonotone PC of size s computing a probability
distribution over categorical random variables Xy, ..., X, such
that the polynomial P computed by C is set-multilinear. Then
we can marginalize in linear time.

» Definition (Set-multilinear): Let V=Y, LU Y, U ... U Yk,
A polynomial p on a set of variables V is set multilinear, if
every monomial of p contains exactly one variable from each

Y; for all i.
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Tractable marginalization in nonmonotone PCs

Let C be a nonmonotone PC of size s computing a probability
distribution over categorical random variables Xy, ..., X, such
that the polynomial P computed by C is set-multilinear. Then
we can marginalize in linear time.

» Definition (Set-multilinear): Let V=Y, LU Y, U ... U Yk,
A polynomial p on a set of variables V is set multilinear, if
every monomial of p contains exactly one variable from each
Y; for all i.

> Each X; represented by partition z;,...,z; 4—1 which are inputs
to C.
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Connection with DPPs

» While PGCs subsume DPPs, a related question is:
What happens to the power of DPPs under simple pre- and
post-processing?
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Connection with DPPs

» While PGCs subsume DPPs, a related question is:
What happens to the power of DPPs under simple pre- and
post-processing?

» We show that this question is Hard to answer.

Any arithmetic formula can be represented as an affine pro-
jection of a DPP.

Interpretation: If there is a PGC that cannot be written
as affine projection of a DPP, then we separate algebraic
formulas and circuits.
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Conclusions and Future Work

Summary

» Power of PGCs comes from negative weights.
» PGCs allow efficient marginalisation only for binary variables.

» Difficult to establish connection between PGCs and DPPs
under pre and post-processing.

Future Directions

> Are there efficient marginalisation algorithms for categorical
distributions which are not set-multilinear?

> What is the most general class of models that represents
tractable distributions?
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Thank You!

Questions?
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