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Probabilistic Inference

Probabilistic models should:
▶ Allow for efficient probabilistic inference.
▶ Represent as many classes of distributions as possible

But n binary random =⇒ 2n assignments.

Tradeoff between expressiveness and tractability. [Rot96].
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Examples of tractable models

▶ Determinantal Point Processes (DPPs)
- Characterized by a PSD matrix.
- Model negative dependencies.

▶ Probabilistic Circuits (PCs)
- Store probability mass functions.
- Only allow positive weights.
* Power is incomparable to DPPs. [ZHV20]

▶ Probabilistic Generating Circuits (PGCs)
- Store probability generating polynomial.
- Allow for negative weights.
* PGCs tractably subsume both PCs and DPPs. [ZJV21]

Motivation for our work

- Where does this power of PGCs comes from?

- How powerful they truly are?
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Source of power of PGCs*

The power of PGCs comes from negative weights, as PCs
with negative weights (nonmonotone PCs) subsume PGCs.

Extent of power of PGCs*

Efficient marginalization over PGCs representing distributions
with more than two categories implies P = NP.

Power of nonmonotone PCs

Nonmonotone PCs computing set-multilinear polynomials
support tractable marginalization over categorical variables
of an arbitrary image size.

*Proven independently in [BZV24].
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DPP example

L =

X1 X2 X3

4 1 3 X1

1 5 2 X2

3 2 8 X3

Pr(X1 = 0,X2 = 1,X3 = 1)
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L =

X1 X2 X3

4 1 3 X1

1 5 2 X2

3 2 8 X3

Pr(X1 = 0,X2 = 1,X3 = 1)

∝
∣∣∣∣5 2
2 8

∣∣∣∣
Normalization Constant = det(L+ I ) = 199
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DPP example

L =

X1 X2 X3

4 1 3 X1

1 5 2 X2

3 2 8 X3

Pr(X1 = 0,X2 = 1,X3 = 1)

∝
∣∣∣∣5 2
2 8

∣∣∣∣
Normalization Constant = det(L+ I ) = 199

Allow tractable marginalization by storing probabilities as de-
terminants of submatrices.
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PC and PGC example
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Marginalisation is
tractable if PC is de-
composable and smooth.
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Marginalisation is
tractable if PC is de-
composable and smooth.
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Tractable marginaliza-
tion for binary variables.
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Separation between PCs and PGCs

Theorem

PGCs over binary variables can be simulated by nonmonotone
PCs with only polynomial overhead in size.

Proof Idea.
▶ Let a PGC compute f (z1, ..., zn) . Define the polynomial g as

g(x1, x1, ..., xn, xn) = f (
x1

x1
,
x2

x2
, ...,

xn

xn
) ·

n∏
i=1

xi .

▶ g would be multilinear and homogenous with deg(g) = n

▶ Multiplicative term only increases size of g by O(n).
▶ To remove division gates, use [Str73]’s result to eliminate

them in polynomial overhead.
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Non-binary marginalization is hard for PGCs

Theorem

Efficient marginalization over PGCs involving quaternary ran-
dom variables implies that NP = P.

Proof Idea.
▶ #PM in 3-regular bipartite graph G is #P-Hard. [DL92]
▶ Using G , we construct a PGC C =

∏n
i=1

∑
j∈N(i) Ei ,jVj .

▶ Each Vi appears thrice, hence acts as quaternary variable.
▶ Number of monomials in coefficient of V1 · V2 · ... · Vn gives us

number of perfect matchings in G.

Remark: Similar result follows for ternary variables, if we
allow marginalization over subsets of images.
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Tractable marginalization in nonmonotone PCs

Theorem

Let C be a nonmonotone PC of size s computing a probability
distribution over categorical random variables X1, . . . ,Xn such
that the polynomial P computed by C is set-multilinear. Then
we can marginalize in linear time.

▶ Definition (Set-multilinear): Let V = Y1 ⊔ Y2 ⊔ ... ⊔ Yk .
A polynomial p on a set of variables V is set multilinear, if
every monomial of p contains exactly one variable from each
Yi for all i .

▶ Each Xi represented by partition zi ,0,...,zi ,d−1 which are inputs
to C .

Probabilistic Generating Circuits - Demystified



References

Tractable marginalization in nonmonotone PCs

Theorem

Let C be a nonmonotone PC of size s computing a probability
distribution over categorical random variables X1, . . . ,Xn such
that the polynomial P computed by C is set-multilinear. Then
we can marginalize in linear time.

▶ Definition (Set-multilinear): Let V = Y1 ⊔ Y2 ⊔ ... ⊔ Yk .
A polynomial p on a set of variables V is set multilinear, if
every monomial of p contains exactly one variable from each
Yi for all i .

▶ Each Xi represented by partition zi ,0,...,zi ,d−1 which are inputs
to C .

Probabilistic Generating Circuits - Demystified



References

Tractable marginalization in nonmonotone PCs

Theorem

Let C be a nonmonotone PC of size s computing a probability
distribution over categorical random variables X1, . . . ,Xn such
that the polynomial P computed by C is set-multilinear. Then
we can marginalize in linear time.

▶ Definition (Set-multilinear): Let V = Y1 ⊔ Y2 ⊔ ... ⊔ Yk .
A polynomial p on a set of variables V is set multilinear, if
every monomial of p contains exactly one variable from each
Yi for all i .

▶ Each Xi represented by partition zi ,0,...,zi ,d−1 which are inputs
to C .

Probabilistic Generating Circuits - Demystified



References

Connection with DPPs

▶ While PGCs subsume DPPs, a related question is:
What happens to the power of DPPs under simple pre- and
post-processing?

▶ We show that this question is Hard to answer.

Theorem

Any arithmetic formula can be represented as an affine pro-
jection of a DPP.

Interpretation: If there is a PGC that cannot be written
as affine projection of a DPP, then we separate algebraic
formulas and circuits.
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Conclusions and Future Work

Summary

▶ Power of PGCs comes from negative weights.

▶ PGCs allow efficient marginalisation only for binary variables.
▶ Difficult to establish connection between PGCs and DPPs

under pre and post-processing.

Future Directions
▶ Are there efficient marginalisation algorithms for categorical

distributions which are not set-multilinear?
▶ What is the most general class of models that represents

tractable distributions?
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