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?

Health data streams are growing in availability and 
fidelity…

How can we extract useful knowledge?
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Health data streams are growing in availability and 
fidelity…

Blackbox models make reasonable predictions on 
average, but … 



Good blackbox prediction 

does NOT guarantee

good counterfactual inference



Clinical application:
Post-exercise glycemic response in Type 1 Diabetes
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Can we learn dynamic models that:
- Make accurate forecasts?
- Can be used for counterfactual simulations?
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Clinical application:
Post-exercise glycemic response in Type 1 Diabetes

Can we learn dynamic models that:
- Make accurate forecasts?
- Can be used for counterfactual simulations?

Intervention:
Reduce 
insulin at 
meal prior to 
exercise

Counterfactual 
simulation
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Prediction accuracy:
Blackbox models outperform mechanistic model

30-min post-exercise forecast RMSE

UVA/Padova model (Dalla Man et al. 2014)

Mech Blackbox models



0

10

20

30

40

50

UVA BNODE TCN LSTM Transformer S4

Pr
ed

ic
tio

n 
R

M
SE

Prediction accuracy:
Blackbox models outperform mechanistic model

30-min post-exercise forecast RMSE

UVA/Padova model (Dalla Man et al. 2014)

Mech Blackbox models



Can we use the trained blackbox models for 
counterfactual simulations? NO.
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Can we use the trained blackbox models for 
counterfactual simulations? NO.

How often do we get the ranking wrong?

Often we know things like “[more] carbohydrates raise 
blood glucose [more]”...and yet predict the opposite



Causal error rate
Consider intervention set:
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Causal error rate
Consider intervention set:

Under fitted model, each yields predictions 

Define error rate: 

Intervention with largest estimated effect:

One-hot encoded 
domain knowledge 
of true max score

Fitted model

Intervention set index
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Blackbox models:
better prediction accuracy + worse causal performance

Mech Blackbox modelsMech Blackbox models

Random guessing = 2/3



What is going wrong with blackbox models???

Training on real-world observational data:
● Partial observations of a complex system



What is going wrong with blackbox models???

Training on real-world observational data:
● Partial observations of a complex system
● Biased data collection
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Can we rescue causally invalid blackbox models?

Blackbox models
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Random guessing = 2/3

Can we rescue causally invalid blackbox models?

Yes, by also optimizing for 
causal loss!

Blackbox models
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Can we rescue causally invalid blackbox models?

Yes, by also optimizing for 
causal loss!



Hybrid loss

Tuning 
parameter



Hybrid loss

Tuning 
parameter



Hybrid loss

Tuning 
parameter

Need to pass gradients



Might hybrid architectures that blend mechanistic 
and data-driven components provide 

adequate causal performance?



Expert-designed mechanistic models

UVA model (Dalla Man et al. 2014)

Physiologic state External inputs 
(nutrition, etc.)



A zoo of hybrid model architectures: Neural Closure

UVA model (Dalla Man et al. 2014)



UVA model (Dalla Man et al. 2014)

A zoo of hybrid model architectures: Neural Closure



A zoo of hybrid model architectures

Expert mechanistic model Black-box model
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Hybrid models can also lose causal validity

Blackbox modelsMech Hybrid models
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But can also be rescued by 
hybrid loss!
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Hybrid2 models: Best of both worlds

inductive biases provide 
SOTA predictive performance
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Hybrid2 models: Best of both worlds

inductive biases provide 
SOTA predictive performance

Hybrid loss improves causal 
performance (even beyond mech)



Conclusion

In many open prediction problems, we have SOME data and 
SOME knowledge.

The next generation of models will hybridize data-driven 
techniques with mechanistic knowledge.



- We propose, through a hybrid loss, a novel 
way to include inductive bias through known 
treatment effect rankings

○ Generality: It can be applied across 
methodologies and applications

- We demonstrate utility of hybrid losses and hybrid 
models through hybrid2 modeling in the 
challenging real-world scenario of modeling post-
exercise glycemic response 

Conclusion
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