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Health data streams are growing in availability and
fidelity...

How can we extract useful knowledge®



Health data streams are growing in availability and
fidelity...

Blackbox models make reasonable predictions on
average, but ...



Good blackbox prediction
does NOT guarantee

good counterfactual inference



Clinical application:
Post-exercise glycemic response in Type 1 Diabetes

Type 1 Diabetes Exercise Initiative (T1DEXI), https://doi.org/10.25934/PR00008428
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Can we learn dynamic models that:
- Make accurate forecastse
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Clinical application:
Post-exercise glycemic response in Type 1 Diabetes
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Reduce simulation
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Can we learn dynamic models that:
- Make accurate forecastse
- Can be used for counterfactual simulations?

Type 1 Diabetes Exercise Initiative (T1DEXI), https://doi.org/10.25934/PR00008428



Prediction accuracy:
Blackbox models outperform mechanistic model

30-min post-exercise forecast RMSE
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Prediction accuracy:
Blacklbox models outperform mechanistic model

30-min post-exercise forecast RMSE
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Can we use the trained blackbox models for
counterfactual simulations?
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Which carb intake yields the highest average glucose?
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Often we know things like “[more] carbohydrates raise
blood glucose [more]”...and yet predict the opposite



Can we use the trained blackbox models for
counterfactual simulations¢ NO.
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Often we know things like “[more] carbohydrates raise
blood glucose [more]”...and yet predict the opposite

How often do we get the ranking wrong?



Causal error rate

Which carb intake yields the highest average glucose? C on S|d er ini-e rve nﬁo n sei-
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Causal error rate
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Causal error rate
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Blackbox models:
better prediction accuracy + worse causal performance
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What is going wrong with blacklbox modelse?¢?

Training on real-world observational data:
e Partial observations of a complex system




What is going wrong with blacklbox modelse?¢?
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Training on real-world observational data:
e Partial observations of a complex system
e Biased data collection




Can we rescue causally invalid blackbox modelse
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Can we rescue causally invalid blackbox modelse
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Can we rescue causally invalid blackbox modelse
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Hybrid loss
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Hybrid loss
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Might hybrid architectures that blend mechanistic
and data-driven components provide
adequate causal performance<



Expert-designed mechanistic models

MEAL MODEL
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UVA model (Dalla Man et al. 2014)



A zoo of hybrid model architectures: Neural Closure
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A zoo of hybrid model architectures
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Prediction RMSE
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Hybrid models can also lose causal validity
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Conclusion

In many open prediction problems, we have SOME data and
SOME knowledge.

The next generation of models will hybridize data-driven

techniques with mechanistic knowledge.



Conclusion

- We propose, through a hybrid loss, a novel
way to include inductive bias through known
treatment effect rankings
o Generdlity: It can be applied across
methodologies and applications

AN AN

Lhybrid(M) = (1- O‘)Lpred(M> + aLegugal (M)




Conclusion

- We propose, through a hybrid loss, a novel
way to include inductive bias through known
treatment effect rankings
o Generdlity: It can be applied across
methodologies and applications

AN

AN

Lhybrid(M) = (1- O‘)Lpred(M> + O‘Lcausal(M)

- We demonstrate utility of hybrid losses and hybrid M

models through hybrid? modeling in the
challenging real-world scenario of modeling post- ;

USSR | WOV
exercise glycemic response
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