Hybrid² Neural ODE Causal Modeling and an Application to Glycemic Response

Bob Junyi Zou

Matthew Levine

Dessi Zaharieva

Ramesh Johari

Emily Fox

Health data streams are growing in availability and fidelity...

How can we extract useful knowledge?

Health data streams are growing in availability and fidelity...

Blackbox models make reasonable predictions on average, but ...

Good blackbox prediction

does NOT guarantee

good counterfactual inference

Clinical application: Post-exercise glycemic response in Type 1 Diabetes

Clinical application: Post-exercise glycemic response in Type 1 Diabetes

Can we learn dynamic models that: - Make accurate forecasts?

Clinical application: Post-exercise glycemic response in Type 1 Diabetes

Can we learn dynamic models that:

- Make accurate forecasts?
- Can be used for counterfactual simulations?

Prediction accuracy: Blackbox models outperform mechanistic model

Type 1 Diabetes Exercise Initiative (T1DEXI), https://doi.org/10.25934/PR00008428

30-min post-exercise forecast RMSE

Prediction accuracy: Blackbox models outperform mechanistic model

Can we use the trained blackbox models for counterfactual simulations?

Can we use the trained blackbox models for counterfactual simulations? NO.

Often we know things like "[more] carbohydrates raise blood glucose [more]"...and yet predict the opposite

Can we use the trained blackbox models for counterfactual simulations? NO.

Often we know things like "[more] carbohydrates raise blood glucose [more]"...and yet predict the opposite

How often do we get the ranking wrong?

Which carb intake yields the highest average glucose?

Consider intervention set: $\mathbf{v}_{\mathcal{I}}(i)$:

$$X^{(i)}, i=1,\ldots,K$$

Consider intervention set:

$$X^{(i)}, i = 1, \dots, K$$

Under fitted model, each yields predictions

$$\hat{Y}^{(i)}, \ i=1,\ldots,K$$

Consider intervention set:

$$X^{(i)}, i=1,\ldots,K$$

Under fitted model, each yields predictions

$$\hat{Y}^{(i)}, \ i=1,\ldots,K$$

Intervention with largest estimated effect:

$$\hat{\mathcal{I}} = \arg \max_{i} \operatorname{score}(\hat{Y}^{(i)})$$

Define error rate:

 $L_{CausalError}$

Consider **intervention set**:

$$X^{(i)}, i = 1, \dots, K$$

Under fitted model, each yields predictions

$$\hat{Y}^{(i)}, \ i=1,\ldots,K$$

 $\sum L_{0/1}(\hat{\mathcal{I}}_n,\mathcal{I}_n^*)$

Intervention with largest estimated effect:

Fitted model

$$\hat{\mathcal{I}} = \arg \max_{i} \operatorname{score}(\hat{Y}^{(i)})$$

One-hot encoded
 domain knowledge of true max score

Intervention set index

Blackbox models: **better** prediction accuracy + **worse** causal performance

Random guessing = 2/3

What is going wrong with blackbox models???

Training on real-world observational data:
 Partial observations of a complex system

What is going wrong with blackbox models???

Training on real-world observational data:

- Partial observations of a complex system
- Biased data collection

Can we rescue causally invalid blackbox models?

Can we rescue causally invalid blackbox models?

Can we rescue causally invalid blackbox models?

Hybrid loss

$$L_{\rm hybrid}(\hat{M}) = (1 - \alpha) L_{\rm pred}(\hat{M}) + \alpha L_{\rm CausalError}(\hat{M})$$

$$\uparrow_{\rm Tuning}_{\rm parameter}$$

Might hybrid architectures that blend **mechanistic** and **data-driven** components provide **adequate causal performance**?

Expert-designed mechanistic models

 $d\mathbf{s}$ $= f_{
m mech}$ $\mathbf{s}, \mathbf{u}; \; heta_{ ext{mech}}$ dtPhysiologic state External inputs (nutrition, etc.)

UVA model (Dalla Man et al. 2014)

A zoo of hybrid model architectures: Neural Closure

$$rac{d {f s}}{dt} = f_{
m mech} \Big({f s}; \; heta_{
m mech} \Big)$$

UVA model (Dalla Man et al. 2014)

A zoo of hybrid model architectures: Neural Closure

UVA model (Dalla Man et al. 2014)

A zoo of hybrid model architectures

Expert mechanistic model

Black-box model

Hybrid models can **also** lose causal validity

Hybrid models can **also** lose causal validity

Hybrid models can **also** lose causal validity

Hybrid² models: **Best of both worlds**

Hybrid² models: **Best of both worlds**

In many open prediction problems, we have <u>SOME</u> data and <u>SOME</u> knowledge.

The next generation of models will **<u>hybridize</u>** data-driven techniques with mechanistic knowledge.

Conclusion

- We propose, through a **<u>hybrid loss</u>**, a novel way to include inductive bias through known treatment effect rankings

• <u>Generality:</u> It can be applied across methodologies and applications

$$L_{\text{hybrid}}(\hat{M}) = (1 - \alpha)L_{\text{pred}}(\hat{M}) + \alpha L_{\text{causal}}(\hat{M})$$

Conclusion

- We propose, through a **<u>hybrid loss</u>**, a novel way to include inductive bias through known treatment effect rankings

• <u>Generality:</u> It can be applied across methodologies and applications

$$L_{\text{hybrid}}(\hat{M}) = (1 - \alpha)L_{\text{pred}}(\hat{M}) + \alpha L_{\text{causal}}(\hat{M})$$

- We demonstrate utility of hybrid losses and hybrid models through <u>hybrid² modeling</u> in the challenging real-world scenario of modeling postexercise glycemic response

Acknowledgements

- Helmsley Charitable Trust
- Stanford Institute for Human-Centered AI
- Eric and Wendy Schmidt Center at Broad Institute
- AFOSR, ONR, NSF, NIH
- Vivli
- Alex Wang

Paper link: https://arxiv.org/abs/2402.17233

Bob Zou

Matthew Levine

Dessi Zaharieva

Ramesh Johari

Emily Fox