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e The human brain i1s better described as a
Flat neural model, according to the
Shallow Brain Hypothesis [l
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[l How deep is the brain? The shallow brain hypothesis. Mototaka Suzuki, et al. Nature Reviews 2023



However ...

A Flatter neural model refers to an

No.Params and Complexity,

increasing

ly toublesome and “ugly.”

increasing

the trainable neural weights becomes

No.Params=240

No.Params=192

No.Params=156

ANN and BioNN’s development paths are not align...



Intuitively, if we replace those neural weights with local and global
Neuronal fields, everything becomes “prettier” and better.

Hebb's Rule (1949) describes the principle of ;
synaptic plasticity: an increase in synaptic efficacy | Feedforward through neural layers

I
I
I
: : : | refers to
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persistent stimulation of a postsynaptic cell. |
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Mathematically ...

A Neuronal field ® : RYx R » R

refers to: T

R A

* First, embedding each neuron into a T Y= WT |

J-dimensional manifold e e

 Each neuron corresponds to a | Neuronal Dynamics | o
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between neurons. | y=[Y®(u,z)du;



How to simulate the signal transmission within Neuronal Fields

e Solutionl2l; we design a ruler, i.e., a metric function defined via piecewise linearities
to measure the dynamical relations between neurons

where 4 € |

required.
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are trainable coefficients, and H € N are the number of linearities

 Then, a neural layer with m input and n output neurons, which requires m X n
trainable parameters, now only needs d X (m + n) trainable parameters.

2l Dynamics-inspired Neuromorphic Visual Representation Learning. Z. Pei, S. Wang. CAS-/CT. ICML 2023.



 However, this Euclidean piecewise linearity is overly simplistic to
capture the complexity of the neuronal dynamics as in the human brain.

 |deally, we should upgrade the Euclidean neuronal state space to a
Riemannian one, which is tailored for curved surfaces, much like the
convoluted surfaces of the human cerebral cortex.
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Why use a Riemannian metric? Because...

* Unlike Euclidean metrics, a Riemannian metric can handle the relationships
between different dimensions of encodings.

----------------------------------------------------------------------------------------

In the human brain, the
neuronal components
= interact with each other
in a cross-dimensional
‘manner, rather than in a
.one-to-one fashion. :

-----------------------------------------------------------------------------------------

* These cross-dimensional interaction generates a non-Euclidean neuronal
space based on curved surfaces



 However, a Riemannian metric requires O(dz), how to simplify it...?

e Our Solution:

Step 1: design a d-dimensional displacement vector, i.e., a skipping
leapfrog, to define the inter-dimensional relation between neurons.

Step 2: obtain an intermediate metric vector to interpret the neuronal
dynamical relation in the Riemannian metric space.

Step 3: compute the final result via a trainable linear projection that
maps the metric vector to the Euclidean scalar space.




Step 1: construct displacement vectors with different step sizes
A displacement vector d)(fy) € R? defines the inter-dimensional relation between neurons
Vil =qli]—qli+s], s€S

where & C {0, 1... d} are pre-defined displacement steps, e.g., & = {0, 1, 2} or & = {1, 3, 5}
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Step 2: map to the metric space
The intermediate metric vectors between neurons x and y defined as
M) = d)UY € R%

where U®) € R%% is a trainable projection, and dﬂ e N* < d is the pre-defined dimension
of the Riemannian metric space.
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Step 3: weight the dimensions to obtain final value

Add the activated metric vectors and sum the components via a trainable linear
projection to obtain the final result

dﬂ
8(q,, q,) = Z Pa (Z Mﬁg?) [a]
a=0

seES

where p & R% refers to the trainable projection.
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An Overview our Method’s Pipeline
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We refer to this Neuronal Riemannian Metric as RieM

* Theoretically and empirically, RieM can achieve stronger representational capabillity.

 Based on this, we propose a data-free neural compression method to transform neural
structures into a more parameter efficient dynamical system without neural weights.

 The compression process is further optimized using techniques such as our proposed
Shared Correlation Counts and dynamical merging mechanism.
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Empirical Results on Vision Benchmarks

METHOD DATA-FREE SIZE (MB) W/A-BIT Topr-1 (%)
ORIGINAL X 46.83 32132 71.47
DFQ (NAGEL ET AL., 2019) Vv 8.36 6/6 66.30
UDFC (BAIET AL., 2023) Vv 8.36 6/6 72.70
RESNET-18 RIEM (OURS) Vv 8.36 8/16 71.80
DDAQ (LI ET AL., 2022C) Vv 5.58 4/4 58.44
DSG (ZHANG ET AL., 2021) X 5.58 4/4 34.33
UDFC (BAIET AL., 2023) Vv 5.58 4/4 63.49
LP-NORM (PEI & WANG, 2023) Vv 5.58 8/16 64.52
RIEM (OURS) vV 5.58 8/16 66.30
ORIGINAL X 102.53 32/32 T2
OSME (CHOUKROUN ET AL., 2019) Vv 12.28 4/32 67.36
GDFQ (XU ET AL., 2020) X 12.28 4/4 55:65
RESNET-50 SQUANT (GUO ET AL., 2022) 4 12.28 4/4 70.80
UDFC (BAIET AL., 2023) Vi 12.28 4/4 72.09
LP-NORM (PEI & WANG, 2023) 3/ 12.28 8/16 72.96
RIEM (OURS) Vv 12.28 8/16 73.26
ORIGINAL X 32.34 32/32 74.36
OMSE (CHOUKROUN ET AL., 2019) VA 6.00 4/32 64.40
DENSENET-121 UDFC (BAIET AL., 2023) Vv 6.00 4/32 70.15
LP-NORM (PEI & WANG, 2023) Vv 6.00 8/16 71.66
RIEM (OURS) Vv 6.00 8/16 73.15

» Better data-free neural compression on ImageNet-1k compared with other Quantization and

Pruning methods.

METHOD PRUNE-RATIO W-BIT Si1ZzE(MB) FLOPs (G) Topr-1 (%)
ORIGINAL 0% 32 87.32 73:27
NEURON MERGE (KIM ET AL., 2020) 10% 32 78.8 6.84 67.10
UDFC (BAIET AL., 2023) 10% 6 14.8 6.84 69.86
RESNET-34 RIEM (OURS) 10% 6 14.8 5.30 72.216
NEURON MERGE (KIM ET AL., 2020) 30% 32 61.6 5.30 39.40
UDFC (BAIET AL., 2023) 30% 6 11.6 5.30 59.25
RIEM (OURS) 30% 6 11.6 5.30 70.144
ORIGINAL 0% 32 178.81 7151
NEURON MERGE (KIM ET AL., 2020) 10% 32 154.4 3.24 72.46
UDFC (BAIET AL., 2023) 10% 6 28.8 3.24 74.69
RESNET-101 RIEM (OURS) 10% 6 28.8 2.52 76.032
i NEURON MERGE (KIM ET AL., 2020) 30% 32 112.4 2.32 38.44
UDFC (BAIET AL., 2023) 30% 6 21.2 2.52 65.76
RIEM (OURS) 30% 6 212 2.92 73.296
METHOD DATA-FREE  W-BIT SIZE (MB) AP APso AP7s APs APy AP,
DETR X 32 159.0 40.1 60.6 42.0 18.3 433 59.5
T-DETR (ZHEN ET AL., 2022) X 8 43.6 -0.6 -0.8 -04 +0.5 -0.9 -1.5
T-DETR X 4 33.4 -2.2 -2.7 -2.2 -1.0 -2.7 -3.2
QUANT-DETR Vv 8 43.6 -2.2 -1.2 -3.1 -2.5 -2.5 -1.8
SVD-DETR Vv 8 33.4 -11.5 -14.2 -12.8 -6.1 -15.1 -11.6
RIEM-DETR (OURS) Vv 8 43.6 -0.4 -06 +0.1 +04 -0.3 -1.5
RIEM-DETR (OURS) Vv 8 33.4 -0.7 -0.5 -1.2  +0.1 -1.3 -2.1
RIEM-DETR (OURS) Vv 8 26.7 -2.8 -2.5 -3.4 -2.4 -4.4 -4.1

* Improve the Parameter-efficiency on the COCO object detection benchmark compared with other

Compression methods.



A New Paradigm of Dimensionality Reduction Techniques

MATRIX SHAPE RlOOOx 1000 R5OOOX5OOO RlOOOOxlOOOO A 2
2 v 4
Teomp. | Tnaive 0.1 0.3 0.1 0.3 0.1 0.3 / e /
ISOMETRIC MAPPING 1.22E-01 1.23E-01 6.27E-02 6.28E-02 4.55E-02 4.56E-02
AUTOENCODER 4.60E-02 3.66E-02 1.57E-02 2.86E-02 4.43E-02 4.33E-02
DEEP ‘
AN CODER 3.16E-02 3.41E-02 1.35E-02 1.58E-02 9.50E-03 3.93E-02 _/
LOCALLY LE 3.16E-02 3.16E-02 1.41E-02 1.41E-02 9.98E-03 9.98E-03 W
NYSTROM 3.16E-02 3.16E-02 1.41E-02 1.41E-02 9.98E-03 9.98E-03
KERNEL PCA 1.35E-03 1.35E-03 7.70E-04 7.80E-04 7.40E-04 7.50E-04 Y v, Y,
LP-NORM 2.50E-04 1.31E-04 2.15E-05 1.65E-05 9.87E-06 7.88E-06 %
RIEM (OURS) 2.20E-04 1.20E-04 1.58E-05 1.26E-05 5.56E-06 6.27E-06 Y1 f %yg
Y2
. For avector y € R? and a matrix A € R*3, computing
* Normalized matrix-vector production error on a synthetic matrix. 2 = Ay is equivalent to transmitting signals y € R? from
+ Theratio T,,,,, /T, represents refers to the compression ratio. a set of point groups { Y, ..., ¥} to another set of point

groups {X;, ..., X,}.



Conclusion

Basically, any matrix of R within a neural structure can be converted

into a + b neurons interpreted as d-dimensional neuronal dynamics via
RieM, enabling better data-free neural compression.

Moreover, RieM-based neural representation enables better integration of
black-box neural models with solid physical interpretations.

However, RieM still require time-consuming iterative updates and are
sensitive to parameter Initialization.

Therefore, future work involves refining the computational form, reducing
the conversion time, and deriving a more accurate physics-inspired
framework to enhance neural interpretability and efficiency.
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