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1) Multi Input/Output Patch Projections

● Frequency-based patch size mapping
○ Low frequency → smaller patch size
○ High frequency → larger patch size

● Yearly, Quarterly: 8
● Monthly: 8, 16, 32
● Weekly, Daily: 16, 32
● Hourly: 32, 64
● Minute-level: 32, 64, 128
● Second-level: 64, 128
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2) Any-variate Attention

● Time dimension Positional Encodings
○ Apply RoPE

● Variate dimension Positional Encodings
○ Requirements:

i. Permutation equivariant w.r.t. variate ordering
ii. Permutation invariant w.r.t. variate i.d.
iii. Unbounded - arbitrary number of variates

○ Sinusoidal/Learned/RoPE: Does not fulfill any criteria
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3) Mixture Distribution

● Predict parameters of parametric distribution
a. Student’s t-distribution
b. Negative binomial distribution
c. Log-normal distribution 
d. Low variance Gaussian distribution

From the output projection layer



Pre-training Datasets for Time Series
Existing Work

● Comparison between prior work on pre-training for time series forecasting



Large-scale Open Time Series Archive
Some key statistics



Other Training Details

● Data distribution
○ Cap sampling % of extremely large datasets due to imbalance data

● Task distribution
○ Randomly sample context length, prediction length
○ Randomly subsample multivariate time series
○ Randomly combine aligned univariate time series into multivariate



Experiments
In-distribution Forecasting

● In-distribution on the Monash 
benchmark
○ Results from this figure are aggregated 

over 29 datasets
● Train region of these datasets are 

present in our pre-training dataset
● Test region is held-out for evaluation
● Moirai is a single model
● Baselines have 1 model per datasetFig: Aggregate results on the Monash TSF Benchmark. 



Experiments
Out-of-distribution / Zero-shot forecasting



Experiments
Analysis on context length

● Plot of performance (MAE) against context length
● Prediction length 96, patch size 32
● Increasing context length does not hurt performance

M
A

E
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○ Modifications to the Transformer architecture for Universal Forecasting

■ Multi in/output patch size projections
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Questions?
Thank You!


