

Unified Training of Universal Time Series Forecasting Transformers

Gerald Woo^{1,2}, Chenghao Liu¹, Akshat Kumar², Caiming Xiong¹, Silvio Savarese¹, Doyen Sahoo¹

¹ Salesforce AI Research

² Singapore Management University

One-model-per-(dataset, context length, prediction length)

6 hours context

6 hours forecast

One-model-per-(dataset, context length, prediction length)

One-model-per-(dataset, context length, prediction length)

One-model-per-(dataset, context length, prediction length)

Universal Forecasting

MOIRAL Masked EncOder-based UniveRsAl Time Series Forecasting Transformer Overall architecture

Overall architecture

MOIRAL Masked EncOder-based UniveRsAl Time Series Forecasting Transformer Overall architecture

Prediction Horizon

1) Multi Input/Output Patch Projections

Multi Input/Output Patch Projections

- Low frequency → smaller patch size
- High frequency → larger patch size

- Weekly, Daily: 16, 32
- Hourly: 32, 64
- Minute-level: 32, 64, 128
- Second-level: 64, 128

Variate 2

Variate 2

2) Any-variate Attention

- i,j: time index
- n,m: variate index

Rotary matrix (RoPE) $E_{ij,mn} = (\boldsymbol{W}^{Q}\boldsymbol{x}_{i,m})^{T}\boldsymbol{R}_{i-j}(\boldsymbol{W}^{K}\boldsymbol{x}_{j,n})$

$$A_{ij,mn} = \frac{\exp\{E_{ij,mn}\}}{\sum_{k,o} \exp\{E_{ik,mo}\}},$$

2) Any-variate Attention

- o i,j: time index
- o n,m: variate index

Key

2) Any-variate Attention

and (j,n)-th key

- o i,j: time index
- o n,m: variate index

Key

2) Any-variate Attention

and (j,n)-th key

- o i,j: time index
- o n,m: variate index

$$A_{ij,mn} = \frac{\exp\{E_{ij,mn}\}}{\sum_{k,o} \exp\{E_{ik,mo}\}},$$

3) Mixture Distribution

3) Mixture Distribution

From the output projection layer

3) Mixture Distribution

Pre-training Datasets for Time Series

Existing Work

Comparison between prior work on pre-training for time series forecasting

	Any-variate Probabilistic (Zero-shot) Forecasting		Flexible Distribution	Pre-training Data (Size)	Open-source	
MOIRAI	1	/	1	LOTSA (> 27B)	✓	
TimeGPT-1	✓	✓	×	Unknown (100B)	×	
ForecastPFN	×	×	=	Synthetic Data (60M)	✓	
Lag-Llama	×	1	×	Monash (< 1B)	✓	
TimesFM	×	×	-	Wiki + Trends + Others ($> 100B$)	✓	
TTM	×	×	-	Monash (< 1B)	✓	
LLMTime	×	✓	✓	Web-scale Text	✓	

Large-scale Open Time Series Archive

Some key statistics

Table 2. Key statistics of LOTSA by domain.

	Energy	Transport	Climate	CloudOps	Web	Sales	Nature	Econ/Fin	Healthcare
# Datasets	30	23	6	3	3	6	5	23	6
# Obs.	16,358,600,896	4,900,453,419	4,188,011,890	1,518,268,292	428,082,373	197,984,339	28,547,647	24,919,596	1,594,281
%	59.17%	17.73%	15.15%	5.49%	1.55%	0.72%	0.09%	0.10%	0.01%

Table 3. Key statistics of LOTSA by frequency.

	Yearly	Quarterly	Monthly	Weekly	Daily	(Multi) Hourly	(Multi) Minute-level	(Multi) Second-level
# Datasets	4	5	10	7	21	31	25	2
# Obs.	873,297	2,312,027	11,040,648	18,481,871	709,017,118	19,875,993,973	7,013,949,430	14,794,369
%	0.003%	0.008%	0.040%	0.067%	2.565%	71.893%	25.370%	0.054%

Other Training Details

- Data distribution
 - Cap sampling % of extremely large datasets due to imbalance data
- Task distribution
 - Randomly sample context length, prediction length
 - Randomly subsample multivariate time series
 - Randomly combine aligned univariate time series into multivariate

Table 4. Details of MOIRAI model sizes.

	Layers	$d_{ m model}$	$d_{ m ff}$	Heads	$d_{ m kv}$	Params
Moirai _{Small}	6	384	1536	6	64	14m
Moirai _{Base}	12	768	3072	12	64	91m
$MOIRAI_{Large}$	24	1024	4096	16	64	311m

Experiments

In-distribution Forecasting

Fig: Aggregate results on the Monash TSF Benchmark.

- In-distribution on the Monash benchmark
 - Results from this figure are aggregated over 29 datasets
- Train region of these datasets are present in our pre-training dataset
- Test region is held-out for evaluation
- Moirai is a single model
- Baselines have 1 model per dataset

Experiments

SMU SINGAPORE MANAGEMENT UNIVERSITY

Out-of-distribution / Zero-shot forecasting

Table 5. Probabilistic forecasting results. Best results are highlighted in **bold**, and second best results are <u>underlined</u>. Baseline results are aggregated over five training runs with different seeds, reporting the mean and standard deviation.

		Zero-shot				Full	Baseline			
		MOIRAISmall	MOIRAIBase	MOIRAILarge	PatchTST	TiDE	TFT	DeepAR	AutoARIMA	Seasonal Naive
TTI4-1 - 14-1	CRPS	0.072	0.055	0.050	0.052 ± 0.00	0.048±0.00	0.050 ± 0.00	0.065 ± 0.01	0.327	0.070
Electricity	MSIS	7.999	6.172	5.875	5.744 ± 0.12	5.672 ± 0.08	6.278 ± 0.24	6.893 ± 0.82	29.412	35.251
<u></u>	CRPS	0.471	0.419	0.406	0.518 ± 0.09	0.420 ± 0.00	$0.446 {\pm} 0.03$	0.431 ± 0.01	1.055	0.512
Solar	MSIS	8.425	7.011	6.250	$8.447{\pm}1.59$	$13.754 {\pm} 0.32$	$8.057 {\pm} 3.51$	11.181 ± 0.67	25.849	48.130
2222	CRPS	0.103	0.093	0.098	0.082 ± 0.01	0.077 ± 0.00	$0.087 {\pm} 0.00$	0.121 ± 0.00	0.124	0.151
Walmart	MSIS	9.371	8.421	8.520	6.005 ± 0.21	$\underline{6.258{\pm}0.12}$	$8.718{\pm}0.10$	$12.502 {\pm} 0.03$	9.888	49.458
	CRPS	0.049	0.041	0.051	0.059 ± 0.01	0.054 ± 0.00	0.043 ± 0.00	0.132 ± 0.11	0.252	0.068
Weather	MSIS	5.236	<u>5.136</u>	4.962	7.759 ± 0.49	$8.095\!\pm\!1.74$	7.791 ± 0.44	21.651 ± 17.34	19.805	31.293
	CRPS	0.173	0.116	0.112	0.112±0.00	0.110±0.01	0.110 ± 0.01	0.108±0.00	0.589	0.257
Istanbul Traffic	MSIS	5.937	4.461	4.277	3.813 ± 0.09	4.752 ± 0.17	4.057 ± 0.44	4.094 ± 0.31	16.317	45.473
	CRPS	0.048	0.040	0.036	0.054 ± 0.01	0.046±0.01	0.039±0.00	0.066 ± 0.02	0.116	0.085
Turkey Power	MSIS	7.127	6.766	6.341	8.978 ± 0.51	8.579 ± 0.52	7.943 ± 0.31	$13.520{\pm}1.17$	14.863	36.256

Experiments

SMU SINGAPORE MANAGEMENT UNIVERSITY

Analysis on context length

- Plot of performance (MAE) against context length
- Prediction length 96, patch size 32
- Increasing context length does not hurt performance

- Moirai
 - Modifications to the Transformer architecture for Universal Forecasting
 - Multi in/output patch size projections
 - Any-variate Attention mechanism
 - Mixture distribution predictions

- Moirai
 - Modifications to the Transformer architecture for Universal Forecasting
 - Multi in/output patch size projections
 - Any-variate Attention mechanism
 - Mixture distribution predictions
- LOTSA data
 - Largest collection of open-data for pre-training time series forecasting models
 - 27B obs (231B including number of variates per time series)

- Moirai
 - Modifications to the Transformer architecture for Universal Forecasting
 - Multi in/output patch size projections
 - Any-variate Attention mechanism
 - Mixture distribution predictions
- LOTSA data
 - Largest collection of open-data for pre-training time series forecasting models
 - 27B obs (231B including number of variates per time series)
- Limitations & Future work
 - Heuristic approach to tackling cross-frequency learning (multi patch size mapping)
 - Limited support for high-dimensional time series
 - LOTSA data better diversity of domains and frequency
 - Multi-modality Text + Time Series for cold-start problems or judgemental forecasting

- Moirai
 - Modifications to the Transformer architecture for Universal Forecasting
 - Multi in/output patch size projections
 - Any-variate Attention mechanism
 - Mixture distribution predictions
- LOTSA data
- Thank You!

 ata for pre-training time series forecasting models Largest collection of open-data for p
 - 27B obs (231B including number Questions?r time series)
- Limitations & Future work
 - Heuristic approach to tackling cross-frequency learning (multi patch size mapping)
 - Limited support for high-dimensional time series
 - LOTSA data better diversity of domains and frequency
 - Multi-modality Text + Time Series for cold-start problems or judgemental forecasting

