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Background

Neuroscience AI

Neuroscience provides insights into cognitive processes 
and neural mechanisms, inspiring AI algorithms.

AI aids in analyzing complex neural data and simulating 
brain functions, enhancing neuroscience research.

A Virtuous Cycle



Background

Why morphology data are important?

• The morphology determines which spatial domain can be 
reached for a certain neuron, governing the connectivity of the 
neuronal circuits [1]

• Neuronal morphology also defines how a neuron integrates the 
signal inputs received from other neurons to produce outputs [2]

• Studying neuronal morphologies also facilitates the discovery of 
therapies for brain disorders and some degenerative diseases, 
e.g. mental retardation [3], autism[4] and Alzheimer [5]



Background

• A worm’s brain: 𝟑𝟎𝟐 neurons                      

• A fly’s brain: 𝟏𝟎𝟎, 𝟎𝟎𝟎 neurons 

• A mouse’s brain: 𝟏𝟎𝟕~𝟏𝟎𝟖 neurons        

• A human being’s brain: 𝟏𝟎𝟏𝟏 neurons

The traditional way to collect quality neuronal morphologies involves three key steps:
i) histological preparation, ii) microscopic visualization and iii) accurate tracing.
labor-intensive time-consuming potentially subject to human bias and error

We can opt to generate plausible morphology 
samples by computational approaches.

Baseline: MorphVAE [6]
the only existing learning-based method



Preliminaries
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Node View Branch View Key Concepts:

• Soma: 
the root node (unique)
can have ≥ 𝟐 outgoing edges 🌟

• Tips: 
the leaf nodes

• Bifurcations: 
can only have 2 outgoing edges 🌟

• Branches:
the paths starting from a 
multifurcation (soma or 
bifurcation) and ending at a 
bifurcation or a tip

A neuronal morphology is described as a set of nodes in three-dimensional space, 
with each node associated with a coordinate in this space.

Neuronal morphology is a tree-like structure.



Brief Introduction to MorphVAE

The basic building block of MorphVAE: 3D-walk the path from the soma to a tip

Two steps:
• generate all 3D-walks in one shot
• adopt a post-hoc clustering method on the generated 3D-walks to aggregate some nodes of different 3D-walks

there may exist other nodes that have > 𝟐 outgoing edges in the final generated morphology besides the soma

This contradicts a commonly accepted notion that only the soma node can have more than two child branches!



Methodology
Layer-by-layer Generation Strategy

In practice, dendrites or axons grow from soma progressively and may diverge several times in the growing process.

Our strategy mimics the natural growth pattern of neurons to some extent.

MorphVAE violates this!

Following such a layer-by-layer strategy, a new morphology can be obtained by generating 
new layers and merging them to intermediate generated morphology regressively.



Methodology
Generating Branches in Pairs

As pointed out in previous works [7, 8, 9], 

there exists a complex dependency between sibling branches.

If we separate sibling branches from each other and generate each of 
them individually, this dependency will be hard to model. MorphVAE fails in this regard

We can regard sibling branches as a whole and generate sibling branches in pairs 
each time, to implicitly model their internal dependency

A natural idea comes to our mind!



grown branches could influence their subsequent branches

Methodology
Conditional Generation

A Key Observation:

We propose to encode the intermediate morphology which has been generated into an embedding and restrict 
the generation of branch pairs in the following layer to be conditioned on this embedding we obtain.

Condition

We further split the condition into local condition and global condition. 

Assuming that we are generating one certain pair of branches, we define:

the path from soma to the bifurcation from which the pair to be generated starts                local condition
its previous layers structure                global condition



Local: Previous studies [10, 11] show that the dendrites or axons usually extend away from the soma without 
making any sharp change of direction, thus reflecting that the orientation of a pair of sibling branches is 
mainly determined by the overall orientation of the path from the soma to the start point of the siblings. 

Global: Dendrites/axons establish territory coverage by following the organizing principle of self-avoidance 
[12, 13, 14]. Self-avoidance refers to dendrites/axons that should avoid crossing, thus spreading evenly over 
a territory [15]. Since the global condition can be regarded as a set of the local conditions and each local 
condition can roughly decide the orientation of a corresponding pair of branches, the global condition helps 
us better organize the branches in the same layer and achieve an even spread.

Methodology
Conditional Generation (Cont.)

Justifications for the Conditions from a Neuroscience Perspective:



Methodology
The Distinction of the Soma Branch Layer

There is no proper definition of conditions for the soma branch layer.

The soma branch layer cannot be unified to the conditional generation formulation.

A straightforward solution is to directly present the soma branches as 
conditional input to the model, which are fairly small in number 

compared to all the branches

Another slightly more complex approach is to generate the soma 
branch layer using another VAE without conditions 

MorphGrower

MorphGrower†

Two approaches



Methodology
Overview of MorphGrower
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For details on the methods and model instantiation, 
feel free to scan the two QR codes on the right! 
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Experiments
Quantitative Results on Morphological Statistics
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MorphGrower
significantly outperforms

MorphVAE！
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Experiments
Generation Plausibility with Real/Fake Classifier

harder to be distinguished from real samples

we have presented our generated samples 
to neuroscience domain experts and receive 
positive feedback for their realistic looking👍



Experiments
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The Electrophysiological Response Simulation Results

The electrophysiological responses 
of real and our generated samples 
exhibit a high degree of similarity.



Experiments
Ablation study Snapshots of the Generation
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Visualization of Generated Samples
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