Position: Rethinking Post-Hoc Search-Based Neural Approaches for Solving Large-Scale Traveling Salesman Problems

<u>Yifan Xia</u> Xianliang Yang Zichuan Liu Zhihao Liu Lei Song Jiang Bian

The 41th International Conference on Machine Learning (ICML 2024)

- 1. Do those ML models really learn to generate heatmaps?
 - $\circ~$ Misaligned training and test phases

- 1. Do those ML models really learn to generate heatmaps?
 - $\circ~$ Misaligned training and test phases

Ο

- $\circ \text{ Original loss:} \qquad \qquad \mathcal{L}(\theta) = \mathbb{E}_{s \sim \mathcal{S}} \left[\mathbb{E}_{\Phi \sim f_{\theta}(s)} \left[\mathbb{E}_{\pi \sim g(s, \Phi)} \left[c\left(\boldsymbol{\pi} \right) \right] \right] \right]$
 - Surrogate loss: $\mathcal{L}_{surrogate}(\theta) = \mathbb{E}_{s \sim S} \left[\mathbb{E}_{\Phi \sim f_{\theta}(s)} \left[\ell(s, \Phi) \right] \right]$

- 1. Do those ML models really learn to generate heatmaps?
 - $\circ~$ Misaligned training and test phases

- 2. With reliance on MCTS algorithm, why not use LKH-3 instead?
 - o Both are handcrafted heuristics, relying heavily on expert knowledge

 \circ k-opt heuristic

- 2. With reliance on MCTS algorithm, why not use LKH-3 instead?
 - o Both are handcrafted heuristics, relying heavily on expert knowledge

Demonstrating ML's inefficiency in Generating Heatmaps

• Simplest heatmap generation method: $\Phi_{i,j}$

$$= \frac{e^{-d_{i,j}/\tau}}{\sum_{k \neq i} e^{-d_{i,k}/\tau}}$$

Demonstrating ML's inefficiency in Generating Heatmaps

• Simplest heatmap generation method: $\Phi_{i,j}$

$$r_{j} = \frac{e^{-d_{i,j}/\tau}}{\sum_{k \neq i} e^{-d_{i,k}/\tau}}$$

heatmap = F.softmax(-distance_matrix / tau, dim=2)

Demonstrating ML's inefficiency in Generating Heatmaps

• Simplest heatmap generation method: $\Phi_{i,j}$

$$_{j} = rac{e^{-d_{i,j}/ au}}{\sum_{k \neq i} e^{-d_{i,k}/ au}}$$

 Align training and test phases: simple heatmap generation methods can outperform ML

Figure 3. SoftDist-Guided MCTS Phases.

Demonstrating MCTS's Lack of Practicality Compared to LKH-3

- Fair comparison between MCTS and LKH-3
 - $\circ~$ Same CPU, same thread count, same search time

Demonstrating MCTS's Lack of Practicality Compared to LKH-3

- Fair comparison between MCTS and LKH-3
 - Same CPU, same thread count, same search time
- What percentage of LKH-3's performance does MCTS achieve?

Demonstrating MCTS's Lack of Practicality Compared to LKH-3

- Fair comparison between MCTS and LKH-3
 - $\circ~$ Same CPU, same thread count, same search time
- What percentage of LKH-3's performance does MCTS achieve?
 - $\,\circ\,$ A novel metric to measure the ratio of the performance gaps of LKH-3 and MCTS

$$Score = \frac{Gap_{\rm LKH-3}}{Gap_{\rm MCTS}}$$

 Heatmaps generated by ML underperform those generated by simpler methods

METHOD	TYPE	TSP-500			TSP-1000			TSP-10000		
		LENGTH↓	$GAP\downarrow$	TIME \downarrow	Length \downarrow	$GAP\downarrow$	Time \downarrow	LENGTH ↓	GAP↓	Time \downarrow
CONCORDE	OR(EXACT)	16.55*	$\sim \rightarrow 1$	37.66м	23.12*		6.65н	N/A	N/A	N/A
GUROBI	OR(EXACT)	16.55	0.00%	45.63н	N/A	N/A	N/A	N/A	N/A	N/A
LKH-3 (DEFAULT)	OR	16.55	0.00%	46.28M	23.12	0.00%	2.57H	71.78*		8.8H
LKH-3 (LESS TRAILS)	OR	16.55	0.00%	3.03M	23.12	0.00%	7.73M	71.79		51.27M
NEAREST INSERTION	OR	20.62	24.59%	Os	28.96	25.26%	0s	90.51	26.11%	6s
RANDOM INSERTION	OR	18.57	12.21%	Os	26.12	12.98%	0s	81.85	14.04%	4s
FARTHEST INSERTION	OR	18.30	10.57%	0s	25.72	11.25%	0s	80.59	12.29%	6 S
EAN	RL+S	28.63	73.03%	20.18M	50.30	117.59%	37.07м	N/A	N/A	N/A
EAN	RL+S+2-OPT	23.75	43.57%	57.76M	47.73	106.46%	5.39н	N/A	N/A	N/A
AM	RL+S	22.64	36.84%	15.64M	42.80	85.15%	63.97м	431.58	501.27%	12.63M
AM	RL+G	20.02	20.99%	1.51M	31.15	34.75%	3.18M	141.68	97.39%	5.99м
AM	RL+BS	19.53	18.03%	21.99м	29.90	29.23%	1.64H	129.40	80.28%	1.81H
GCN	SL+G	29.72	79.61%	6.67M	48.62	110.29%	28.52M	N/A	N/A	N/A
GCN	SL+BS	30.37	83.55%	38.02M	51.26	121.73%	51.67M	N/A	N/A	N/A
POMO+EAS-EMB	RL+AS	19.24	16.25%	12.80H	N/A	N/A	N/A	N/A	N/A	N/A
POMO+EAS-LAY	RL+AS	19.35	16.92%	16.19н	N/A	N/A	N/A	N/A	N/A	N/A
POMO+EAS-TAB	RL+AS	24.54	48.22%	11.61н	49.56	114.36%	63.45н	N/A	N/A	N/A
DIFUSCO#	SL+MCTS	16.63	0.51%	3.61м+ 1.67м	23.39	1.18%	11.86м+ 3.34м	73.76	2.77%	28.51м+ 16.87м
ATT-GCN [†]	SL+MCTS	16.82	1.64%	0.52м+ 1.67м	23.67	2.37%	0.73м+ 3.34м	74.50	3.80%	4.16м+ 16.77м
DIMES [†]	RL+MCTS	16.84	1.77%	0.97м+ 1.67м	23.68	2.44%	2.08м+ 3.34м	74.10	3.23%	4.65м+ 16.77м
UTSP [†]	UL+MCTS	17.11	3.41%	1.37м+ 1.67м	24.14	4.40%	3.35M+ 3.34M		_	N
OURS	SOFTDIST+MCTS	16.78	1.44%	0.00м+ 1.67м	23.63	2.20%	0.00м+ 3.34м	74.03	3.13%	0.00м+ 16.78м

 Heatmaps generated by ML underperform those generated by simpler methods

Method	Түре	TSP-500			TSP-1000			TSP-10000		
		LENGTH↓	$GAP\downarrow$	TIME \downarrow	LENGTH↓	GAP↓	TIME \downarrow	LENGTH↓	$GAP\downarrow$	Time \downarrow
CONCORDE	OR(EXACT)	16.55*	$\sim \sim 1$	37.66м	23.12*	·	6.65н	N/A	N/A	N/A
GUROBI	OR(EXACT)	16.55	0.00%	45.63н	N/A	N/A	N/A	N/A	N/A	N/A
LKH-3 (DEFAULT)	OR	16.55	0.00%	46.28M	23.12	0.00%	2.57н	71.78*		8.8H
LKH-3 (LESS TRAILS)	OR	16.55	0.00%	3.03M	23.12	0.00%	7.73M	71.79	(1	51.27M
NEAREST INSERTION	OR	20.62	24.59%	Os	28.96	25.26%	05	90.51	26.11%	6s
RANDOM INSERTION	OR	18.57	12.21%	0s	26.12	12.98%	0s	81.85	14.04%	45
FARTHEST INSERTION	OR	18.30	10.57%	0s	25.72	11.25%	0s	80.59	12.29%	6s
EAN	RL+S	28.63	73.03%	20.18M	50.30	117.59%	37.07м	N/A	N/A	N/A
EAN	RL+S+2-OPT	23.75	43.57%	57.76M	47.73	106.46%	5.39н	N/A	N/A	N/A
AM	RL+S	22.64	36.84%	15.64M	42.80	85.15%	63.97M	431.58	501.27%	12.63M
AM	RL+G	20.02	20.99%	1.51M	31.15	34.75%	3.18м	141.68	97.39%	5.99м
AM	RL+BS	19.53	18.03%	21.99м	29.90	29.23%	1.64H	129.40	80.28%	1.81H
GCN	SL+G	29.72	79.61%	6.67M	48.62	110.29%	28.52M	N/A	N/A	N/A
GCN	SL+BS	30.37	83.55%	38.02M	51.26	121.73%	51.67M	N/A	N/A	N/A
POMO+EAS-EMB	RL+AS	19.24	16.25%	12.80H	N/A	N/A	N/A	N/A	N/A	N/A
POMO+EAS-LAY	RL+AS	19.35	16.92%	16.19н	N/A	N/A	N/A	N/A	N/A	N/A
POMO+EAS-TAB	RL+AS	24.54	48.22%	11.61н	49.56	114.36%	63.45н	N/A	N/A	N/A
DIFUSCO#	SL+MCTS	16.63	0.51%	3.61м+ 1.67м	23.39	1.18%	11.86м+ 3.34м	73.76	2.77%	28.51м+ 16.87м
ATT-GCN [†]	SL+MCTS	16.82	1.64%	0.52м+ 1.67м	23.67	2.37%	0.73м+ 3.34м	74.50	3.80%	4.16м+ 16.77м
DIMES [†]	RL+MCTS	16.84	1.77%	0.97м+ 1.67м	23.68	2.44%	2.08м+ 3.34м	74.10	3.23%	4.65м+ 16.77м
UTSP [†]	UL+MCTS	17.11	3.41%	1.37м+ 1.67м	24.14	4.40%	3.35м+ 3.34м	8 <u>—</u> 9	_	N
OURS	SOFTDIST+MCTS	16.78	1.44%	0.00м+ 1.67м	23.63	2.20%	0.00м+ 3.34м	74.03	3.13%	0.00м+ 16.78м

MCTS-based paradigm underperforms LKH-3, even though it consumes more resources

METHOD	0		Score ↑				
	SUPERVISION	HARDWARE	TSP-500	TSP-1000	TSP-10000		
ATT-GCN [†]	1	GTX 1080 TI GPU	0.74%	3.87%	24.66%		
DIMES [†]	×	NVIDIA P100 GPU	0.68%	3.75%	28.99%		
UTSP [†]	×	NVIDIA V100 GPU	0.35%	2.08%			
DIFUSCO#	1	8×NVIDIA V100 GPUs	2.39%	7.78%	33.82%		
SOFTDIST	×	NVIDIA A100 GPU	0.84%	4.17%	29.88%		

 In both time-sensitive and non-time-sensitive scenarios, LKH-3 is a more practical choice

(b) TSP-1000 with default MCTS settings. (c) TSP-10000 with default MCTS settings.

 By fine-tuning MCTS parameters, the influence of ML-generated heatmaps diminishes; even zero-input heatmaps yield similar performance

Метнор	ľ – – – –	Т	SP-500		TSP-1000				
	Length \downarrow	$\operatorname{Gap} \downarrow$	Time \downarrow	Score \uparrow	LENGTH \downarrow	$\text{Gap} \downarrow$	Time \downarrow	Score \uparrow	
LKH-3 (DEFAULT)	16.55*	0.00%	46.28м	· — .	23.12*	0.00%	2.57н		
ATT-GCN [†]	16.72	1.02%	0.52м+0.67м	5.38%	23.48	1.58%	0.73м+1.43м	13.77%	
DIMES [†]	16.75	1.26%	0.97м+0.68м	4.35%	23.61	2.11%	2.08м+1.45м	10.29%	
DIFUSCO#	16.69	0.90%	3.61м+0.68м	6.12%	23.48	1.56%	11.86м+1.43м	13.93%	
UTSP [†]	16.73	1.09%	1.37м+0.68м	5.05%	23.50	1.65%	3.35м+1.45м	13.18%	
SoftDist	16.72	1.03%	0.00м+0.68м	5.32%	23.52	1.73%	0.00м+1.44м	12.56%	
ZEROS	16.72	1.06%	0.00м+0.68м	5.20%	23.55	1.85%	0.00м+1.44м	11.72%	

 By fine-tuning MCTS parameters, the influence of ML-generated heatmaps diminishes; even zero-input heatmaps yield similar performance

Метнор	e 	Т	SP-500		TSP-1000				
	Length \downarrow	$\operatorname{Gap} \downarrow$	Time \downarrow	Score \uparrow	Length \downarrow	$\text{Gap}\downarrow$	TIME \downarrow	Score \uparrow	
LKH-3 (DEFAULT)	16.55*	0.00%	46.28м	×—	23.12*	0.00%	2.57н	-	
ATT-GCN [†]	16.72	1.02%	0.52м+0.67м	5.38%	23.48	1.58%	0.73м+1.43м	13.77%	
DIMES [†]	16.75	1.26%	0.97м+0.68м	4.35%	23.61	2.11%	2.08м+1.45м	10.29%	
DIFUSCO#	16.69	0.90%	3.61м+0.68м	6.12%	23.48	1.56%	11.86м+1.43м	13.93%	
UTSP [†]	16.73	1.09%	1.37м+0.68м	5.05%	23.50	1.65%	3.35м+1.45м	13.18%	
SOFTDIST	16.72	1.03%	0.00м+0.68м	5.32%	23.52	1.73%	0.00м+1.44м	12.56%	
ZEROS	16.72	1.06%	0.00м+0.68м	5.20%	23.55	1.85%	0.00м+1.44м	11.72%	

Discussion

- Key Issue:
 - \circ Reliance on surrgate loss functions lacking rigorous theoretical foundation
 - Surrogate loss function do not directly optimize original TSP loss, resulting in uncertaion test performance

Discussion

- Key Issue:
 - Reliance on surrgate loss functions lacking rigorous theoretical foundation
 Surrogate loss function do not directly optimize original TSP loss, resulting in uncertaion test performance
- Continued Dependence on Post-Hoc Search Methods:
 - Contradicts goal of using ML in OR to develop generalizable, autonomous algorithms

Discussion

- Key Issue:
 - Reliance on surrgate loss functions lacking rigorous theoretical foundation
 Surrogate loss function do not directly optimize original TSP loss, resulting
 - in uncertaion test performance
- Continued Dependence on Post-Hoc Search Methods:
 - Contradicts goal of using ML in OR to develop generalizable, autonomous algorithms
- Future Direction of ML4CO:
 - Focus on developing more effective heatmap generation methods with a theoretical basis
 - $_{\odot}$ Explore end-to-end solution generation methods

Thanks!

- Poster: Today 11:30 a.m. 1 p.m. Hall C 4-9 #900
- Contact: <u>yfxia@smail.nju.edu.cn</u>

• Paper:

arXiv:2406.03503