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Notations & Supervised Machine Learning

Notation
Consider a labeled dataset D = {xk ; ck}Nk=1

▶ Each example k ∈ {1..N} is characterized by a vector xk ∈ {0, 1}M of M binary attributes
and a class ck ∈ C

▶ vects is the list of the different groups (if any) of binary attributes one-hot encoding the
same original feature

Table 1: Example binary dataset D with N = 4 and M = 4.

f1 f2 f3 f4 c

0 0 0 1 0
1 0 0 0 0
0 1 0 0 1
1 0 1 1 1
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Decision Trees

A tree t is made of:
▶ a set of internal nodes V I

t
▶ a set of leaves VL

t

For every node v ∈ V I
t

⋃
VL
t , let nbtvc denote the number of training examples of

class c that went through v

For every leaf v ∈ VL
t , we let Φv ⊆ {1..M} (resp., Φv ⊆ {1..M}) denote the set of

indices of the binary attributes that must be 1 (resp., 0) for an example to fall into v

Class 0: 2 examples
Class 1: 0 example

Class 0: 0 example
Class 1: 1 example

f2 <= 0.5
Class 0: 2 examples
Class 1: 1 example

Class 0: 0 example
Class 1: 1 example

f3 <= 0.5
Class 0: 2 examples
Class 1: 2 examples

Figure 1: Example decision tree t1 trained on D (Table 1).
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Random Forests

Training Random Forests
A Random Forest T is a set of Decision Trees
To encourage diversity between the different trees, several randomization mechanisms
are used during training:
▶ Bagging (Bootstrap AGGgregatING) consists in generating different training sets (one

for each t ∈ T ) using sampling with replacement (usually from N to N examples)
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Dataset Reconstruction Attack

Reconstruction Attacks
Reconstruction Attacks are a type of inference attack first proposed against database
access mechanisms [Dinur and Nissim, 2003]

The objective is to retrieve (entirely or partly) the dataset used as input of an
algorithm, leveraging only its output(s)

Considered Setup
An adversary has white-box access to a Random Forest T trained on D
The adversary wants to reconstruct a dataset D′ as close as possible to D
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Example Reconstruction from a Decision Tree

Table 2: Example binary dataset D
with N = 4 and M = 4.

f1 f2 f3 f4 c

0 0 0 1 0
1 0 0 0 0
0 1 0 0 1
1 0 1 1 1

Class 0: 2 examples
Class 1: 0 example

Class 0: 0 example
Class 1: 1 example

f2 <= 0.5
Class 0: 2 examples
Class 1: 1 example

Class 0: 0 example
Class 1: 1 example

f3 <= 0.5
Class 0: 2 examples
Class 1: 2 examples

Figure 2: Example decision tree t1 trained on D (Table 2).

Illustrative Example: Reconstruction from Tree-Based Models 5 / 17



Example Reconstruction from a Decision Tree
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Example Reconstruction from a Decision Tree

Table 2: Example binary dataset D
with N = 4 and M = 4.

f1 f2 f3 f4 c

0 0 0 1 0
1 0 0 0 0
0 1 0 0 1
1 0 1 1 1

Bold values can be reconstructed
from Figure 2’s decision tree t1.

Class 0: 2 examples
Class 1: 0 example

Class 0: 0 example
Class 1: 1 example

f2 <= 0.5
Class 0: 2 examples
Class 1: 1 example

Class 0: 0 example
Class 1: 1 example

f3 <= 0.5
Class 0: 2 examples
Class 1: 2 examples

Figure 2: Example decision tree t1 trained on D (Table 2).

⇒ This reconstruction process was introduced by Gambs et al. [2012] (for a single
decision tree)
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Reconstruction from a Random Forest: Some Challenges

Challenges
How can we match the information provided by different trees ?

What if bagging is used (and so some examples may be used multiple times to train
a tree, and others not at all) ?
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Principle

Reconstructing a Random Forest’s Training Set
It is a NP-Complete problem
We propose Mixed-Integer Linear Programming and Constraint Programming
formulations encoding the structure of the trees within the forest
▶ Each tree defines a set of constraints
▶ We leverage general purpose solvers to find feasible reconstructions given the provided

constraints

When bagging is used, we use variables modelling the bootstrap sampling process
and maximize the likelihood of their assignments
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Constraint Programming Formulation I

Constraint Programming Formulation: Variables

We define variables: (i) modelling the reconstructed examples’ attributes and class label , (ii)

assigning the examples to the trees’ leaves , and (iii) encoding the bagging process .

zkc ∈ {0; 1} is 1 if training example k is part of class c, 0 otherwise

xki ∈ {0; 1} is the value of feature i for example k in the reconstruction

ytvkc ∈ Z+ is the number of times training example k is classified by leaf v within
tree t as class c

qtkb ∈ {0; 1} is 1 if training example k is used b ∈ B times in tree t and 0 otherwise

NB: B is the set of possible values for the number of occurences of an example within a tree’s

training set (theoretically, B = {1..N}).
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Constraint Programming Formulation II

Constraint Programming Formulation: Constraints

∀k ∈ {1..N}, ∀w ∈ vects :
∑
i∈w

xki = 1

∀k ∈ {1..N} :
∑
c∈C

zkc = 1

∀k ∈ {1..N}, ∀c ∈ C : if zkc = 0 then
∑

t∈T ,v∈VL
t

ytvkc = 0

∀t ∈ T ,∀v ∈ VL
t , ∀c ∈ C : nbtvc =

∑
k∈{1..N}

ytvkc

∀t ∈ T ,∀k ∈ {1..N}, ∀v ∈ VL
t :

if
∑
c∈C

ytvkc ≥ 1 then

( ∧
i∈Φv

xki = 1

)
∧

( ∧
i∈Φv

xki = 0

)

∀t ∈ T ,∀b ∈ B, ∀k ∈ {1..N} :
∑

v∈VL
t ,c∈C

ytvkc = b ⇐⇒ qtkb = 1

One-Hot Encoding Consistency

Each example is assigned to exactly one class

Example appears only

in its class’ counts

The counts match the

number of assigned examples

The attributes’ values are

consistent with the splits

One hot encodes

the #occurrences
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Constraint Programming Formulation III

Constraint Programming Formulation: Objective
The defined formulation could have many possible solutions, so we orient the search
towards the most likely ones

Bagging performs sampling with replacement from N examples to N examples
⇒ The probability that an example appears exactly b times in a tree’s training set is
then:

pb =

(
1
N

)b

·
(
N − 1
N

)N−b

·

(
N

b

)
The overall probability of a given assignment of the bagging variables
{qt∈T k∈{1..N}b∈B} is then: ∏

t∈T

∏
k∈{1..N}

pb|qtkb=1

Maximizing this probability is equivalent to maximizing its logarithm, so we maximize:∑
t∈T

∑
k∈{1..N}

∑
b∈B

log (pb) qtkb Our objective function
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Experimental Setup I

1) Random Forests Training
We learn Random Forests using the scikit-learn Python library [Pedregosa et al.,
2011]:
▶ With or without Bagging
▶ With |T | ∈ {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
▶ With maximum tree depth dmax ∈ {None, 2, 3, 4, 5, 10}
▶ On three datasets (from which we randomly subsample a training set with N = 100):

Dataset Binary
Prediction Task #Examples #Binary

Features

COMPAS [Angwin et al., 2016] Recidivism prediction 7, 206 15
UCI Adult Income [Dua and Graff, 2017] Income > $50K/year 48, 842 20

Default of Credit Card Client [Yeh and hui Lien, 2009] Default in payment 29, 986 22
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Experimental Setup II

2) Reconstruction Attack
We use the OR-Tools CP-SAT solver [Perron and Didier, 2023] to solve our CP
formulations, with each run being limited to 5 hours of CPU time
Baseline: random reconstruction, aware of one-hot encoding
▶ Same knowledge as ours (number of examples N, of attributes M, and their one-hot

encoding vects) except for the Random Forest itself

3) Attack Success Evaluation
Reconstruction error computation:
▶ We first align the original and reconstructed datasets using a minimum cost matching
▶ We then compute the average Manhattan distance between the original examples and

their matched reconstructed counterparts
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Results I
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(b) Bagging used
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Max. Depth 5

Max. Depth 10
Max. Depth None

Random Baseline

Figure 3: Average reconstruction error as a function of the number of trees |T | within the
target forest T , for different maximum depth values dmax and for the random baseline,

COMPAS dataset.
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Results II
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(b) Bagging used
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Figure 4: Average reconstruction error as a function of the number of trees |T | within the
target forest T , for different maximum depth values dmax and for the random baseline, UCI

Adult Income dataset.
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Results III
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(b) Bagging used
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Figure 5: Average reconstruction error as a function of the number of trees |T | within the
target forest T , for different maximum depth values dmax and for the random baseline, Default

of Credit Card Client dataset.
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Other Experimental Takeaways

The use of Bagging makes the reconstruction task more difficult . . .
▶ . . . but if the adversary correctly guesses the number of occurrences of each example

within each tree’s training set, the reconstruction accuracy is as good as in the
non-bagging case (or even better)

Partial knowledge of the training set can help reconstruct the unknown part
▶ Knowledge of some attributes (columns) helps reconstruct the others
▶ Knowledge of some examples (rows) does not help reconstruct the others ⇒ We suspect

the Differential Privacy guarantees of Bagging [Liu et al., 2021] are in cause

Solution time scales as Θ(N2) with the number of examples, which is considerably
better than the expected worst case ⇒ We can scale up the method to datasets
including up to 1,500 examples
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Conclusion

Summary
Mathematical programming techniques permit us to build a new paradigm of data
reconstruction attacks against machine learning models

The reconstruction problem can be solved efficiently despite its theoretical hardness

A trained Random Forest gives away most (if not all) of its training data, raising
awareness on the dangers of releasing trained models

Future Works
Using a similar strategy on other machine learning models

Improving the models and including additional constraints modeling the behavior of
the training algorithms

Developing and benchmarking protection measures (in particular, differential privacy
techniques) to avoid such attacks in the future
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Reconstruction from a Decision Tree

Probabilistic Reconstructions
The knowledge acquired from a Decision Tree’s structure:

Can be encoded within a probabilistic dataset: a set of random variables (one for
each attribute of each example)

The reconstruction success can be quantified as the uncertainty reduction within the
constructed probabilistic dataset

Introduced by Gambs et al. [2012] and generalized in Ferry et al. [2024]
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CP Formulation without Bagging I

CP Formulation without Bagging: Variables

We define variables: (i) modelling the reconstructed examples’ attributes , and (ii)

assigning the examples to the trees’ leaves .

xki ∈ {0; 1} is the value of feature i for example k in the reconstruction

ytvk ∈ {0; 1} indicates whether training example k is classified by leaf v within tree t

NB: Since each example appears exactly once within each tree’s total counts, we can pre-assign

classes to each of them. We let zkc ∈ {0; 1} be 1 if training example k is part of class c, 0

otherwise.
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CP Formulation without Bagging II

CP Formulation without Bagging: Constraints

∀k ∈ {1..N}, ∀w ∈ vects :
∑
i∈w

xki = 1

∀t ∈ T ,∀k ∈ {1..N} :
∑

v∈VL
t

ytvk = 1

∀t ∈ T ,∀v ∈ VL
t : nbtvc =

∑
k∈{1..N}

zkcytvk

∀t ∈ T ,∀k ∈ {1..N}, ∀v ∈ VL
t :

if ytvk then

( ∧
i∈Φv

xki = 1

)
∧

( ∧
i∈Φv

xki = 0

)

One-Hot Encoding Consistency

Each example is assigned to

exactly one leaf of each tree (redundant)

The counts match the

number of assigned examples

The attributes’ values are

consistent with the splits
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Results: Impact of dmax on the Reconstruction Time

Table 3: Average run time and number of runs for which the solver did not come up with a
feasible solution (#Runs), for a fixed number of trees |T | = 100 (default value).

Max.
Depth

No Bagging Bagging
Avg. T (s) #Runs #Runs

C
O

M
PA

S
2 9.5 0 0
3 36.5 0 0
4 45.7 0 0
5 70.0 0 0
10 110.9 0 0

None 100.8 0 0

A
du

lt

2 20.2 0 0
3 81.5 0 0
4 1943.5 0 0
5 1290.7 0 0
10 346.4 0 1/5

None 196.3 0 1/5

D
ef

au
lt

C
re

di
t 2 35.5 0 0

3 300.8 1/5 0
4 6040.0 2/5 0
5 1358.5 0 0
10 382.8 0 0

None 165.0 0 4/5
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Results: Impact of |T | on the Reconstruction Time

Table 4: Average run time and number of runs for which the solver did not come up with a
feasible solution (#Runs), for no maximum depth constraint (default value).

|T | No Bagging Bagging
Avg. T (s) #Runs #Runs

C
O

M
PA

S

1 0.7 0 0
10 8.4 0 0
30 39.8 0 0
50 53.0 0 0
80 89.7 0 0
100 100.8 0 0

A
du

lt

1 0.8 0 0
10 74.2 0 0
30 84.9 0 0
50 85.1 0 0
80 119.9 0 0
100 196.3 0 1/5

D
ef

au
lt

C
re

di
t 1 0.9 0 0

10 129.7 0 0
30 47.7 0 0
50 66.2 0 2/5
80 161.3 0 4/5
100 165.0 0 4/5
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MILP vs CP Formulation (Non-Bagging Case): Numerical Results I
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(a) CP model
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(b) MILP model
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Figure 7: Average reconstruction error as a function of the number of trees |T | within the
attacked forest T , for different maximum depth values dmax and for the random baseline. For
the experiments on the COMPAS dataset, not using bagging, we report the results obtained

using either the CP model or the MILP one.
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MILP vs CP Formulation (Non-Bagging Case): Numerical Results II
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(a) CP model
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(b) MILP model
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Figure 8: Average reconstruction error as a function of the number of trees |T | within the
attacked forest T , for different maximum depth values dmax and for the random baseline. For

the experiments on the Adult Income dataset, not using bagging, we report the results obtained
using either the CP model or the MILP one.
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MILP vs CP Formulation (Non-Bagging Case): Numerical Results III
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(b) MILP model

Max. Depth 2
Max. Depth 3

Max. Depth 4
Max. Depth 5

Max. Depth 10
Max. Depth None

Random Baseline

Figure 9: Average reconstruction error as a function of the number of trees |T | within the
attacked forest T , for different maximum depth values dmax and for the random baseline. For
the experiments on the Default of Credit Card Client dataset, not using bagging, we report the

results obtained using either the CP model or the MILP one.
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MILP vs CP Formulation (Non-Bagging Case): Running Times

Table 5: Reconstruction times for the experiments on the COMPAS dataset.

Max. Depth Method Reconstruction Times (s)

Avg Std Min Max

2 CP 4.7 3.8 0.1 17.0

MILP 5.4 6.1 0.1 31.2

3 CP 14.1 12.9 0.1 48.4

MILP 10.3 21.9 0.2 162.5

4 CP 25.2 18.9 0.2 58.9

MILP 24.7 52.6 0.2 302.7

5 CP 34.3 23.4 0.3 85.8

MILP 26.4 60.4 0.3 418.6

10 CP 53.7 39.2 0.5 160.6

MILP 77.6 312.7 2.6 2471.2

None CP 49.7 35.5 0.6 142.0

MILP 188.3 791.2 3.3 4521.8
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Experiments on the Impact of Bagging

Setup
Pre-fix the number of occurrences of each example to each tree

Find out the worst reconstruction possible (i.e., the one with the greatest error)
among all those compatible with the constraints and the set assignment

=⇒ we observe that if the number of occurences of each example within each tree’s
training set is correctly guessed, the reconstruction performance is as good (actually,
better!) in the worst case as in the experiments without bagging

=⇒ this illustrates the fact that the inherent difficulty of the reconstruction in the
bagging case comes from the randomness added by Bagging (which is consistent with
its Differential Privacy guarantees [Liu et al., 2021])
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Experiments on the Impact of Bagging: Results I
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(a) Bagging not used
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(b) Benchmark runs (worst reconstruction error possible
with bagging if one correctly guesses the bootstrap

sampling variables)
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Max. Depth None

Random Baseline

Figure 10: Comparison of the benchmark results (using bagging, worst possible reconstruction
error using our set of constraints if the number of occurrences of each example within each tree

are known) with the “no-bagging” ones, COMPAS dataset
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Experiments on the Impact of Bagging: Results II
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(a) Bagging not used
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(b) Benchmark runs (worst reconstruction error possible
with bagging if one correctly guesses the bootstrap

sampling variables)
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Figure 11: Comparison of the benchmark results (using bagging, worst possible reconstruction
error using our set of constraints if the number of occurrences of each example within each tree

are known) with the “no-bagging” ones, UCI Adult Income dataset
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Experiments on the Impact of Bagging: Results III
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(a) Bagging not used

0 20 40 60 80 100
#trees

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
co

ns
tru

ct
io

n 
Er

ro
r

(b) Benchmark runs (worst reconstruction error possible
with bagging if one correctly guesses the bootstrap

sampling variables)
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Figure 12: Comparison of the benchmark results (using bagging, worst possible reconstruction
error using our set of constraints if the number of occurrences of each example within each tree

are known) with the “no-bagging” ones, Default of Credit Card Client dataset
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Experiments on Scalability I

#Examples RF Accuracy Reconstruction error Reconstruction Time (s)
Train Test Avg Avg Std Min Max

25 0.896 0.559 0.0 5.8 1.1 4.1 7.4

50 0.860 0.556 0.0 30.5 5.8 26.6 42.0

100 0.800 0.582 0.0 84.1 12.0 65.8 99.1

200 0.770 0.617 0.0 260.9 28.6 231.2 300.2

300 0.759 0.629 0.0 467.9 80.2 386.1 621.9

400 0.741 0.632 0.0 699.9 52.5 602.3 754.1

500 0.734 0.639 0.0 1071.9 197.0 883.9 1448.7

750 0.725 0.643 0.0 2219.4 428.4 1711.9 2818.9

1000 0.714 0.642 0.0 3678.8 231.0 3300.8 4005.0

1500 0.704 0.650 0.0 7362.2 1097.0 6485.9 9519.5

Table 6: Experiments (non-bagging case) on the reconstruction method’s scalability, COMPAS
dataset. Applying a simple power law regression, we observe that running times are in Θ(N1.7).
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Experiments on Scalability II

#Examples RF Accuracy Reconstruction error Reconstruction Time (s)
Train Test Avg Avg Std Min Max

25 0.952 0.709 0.0 9.1 2.9 6.2 14.6
50 0.964 0.748 0.0 37.0 4.4 29.2 42.8
100 0.964 0.770 0.0 188.2 58.0 117.4 278.3
200 0.949 0.767 0.0 631.7 110.8 513.2 838.6
300 0.935 0.771 0.1 4860.4 2457.7 1430.2 7695.8
400 0.925 0.778 0.1 6119.3 2365.6 2304.4 8054.8
500 0.913 0.779 0.1 6523.6 1558.4 4695.4 8429.2
750 0.905 0.780 0.0 13911.5 5146.7 8764.9 19058.2

Table 7: Experiments (non-bagging case) on the reconstruction method’s scalability, UCI Adult
Income dataset. Applying a simple power law regression, we observe that running times are in

Θ(N1.4).
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Experiments on Scalability III

#Examples RF Accuracy Reconstruction error Reconstruction Time (s)

Train Test Avg Avg Std Min Max

25 0.968 0.733 0.0 6.7 1.5 4.0 8.1

50 0.976 0.723 0.0 42.1 3.5 37.8 47.3

100 0.972 0.740 0.0 148.3 16.6 127.6 169.4

200 0.965 0.751 0.0 905.6 528.1 584.1 1958.1

300 0.957 0.763 0.0 2369.8 1167.5 1316.7 4524.4

400 0.952 0.760 0.0 2733.2 581.5 2065.6 3706.5

500 0.947 0.765 0.0 6119.9 1880.1 3902.8 8671.4

Table 8: Experiments (non-bagging case) on the reconstruction method’s scalability, Default of
Credit Card Client dataset. Applying a simple power law regression, we observe that running

times are in Θ(N2.4).
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Experiments on Partial Reconstruction

Setup
Using Bagging

Pre-fix a varying number of examples or attributes to their true value and observe the
reconstruction error for the remaining ones
Fixing a number of known examples
▶ Does not really help reconstructing the remaining ones
▶ =⇒ we suspect the Differential Privacy guarantees of Bagging [Liu et al., 2021] are in

cause

Fixing a number of known attributes
▶ Corresponds to the case where some attributes are public information
▶ =⇒ helps reconstructing the others!
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Experiments on Partial Reconstruction: Results I
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(a) COMPAS dataset

0 2 4 6 8 10 12
#known attributes

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Re
co

ns
tru

ct
io

n 
Er

ro
r (

fo
r u

nk
no

wn
 a

ttr
ib

ut
es

)

(b) UCI Adult Income dataset

Figure 13: Results of reconstruction experiments with knowledge of some of the attributes. We
report the reconstruction error (for the unknown attributes) as a function of the number of

known attributes in the forest’s training set. For these experiments, all forests are learnt using
scikit-learn’s default configuration (i.e., |T | = 100 and no maximum depth constraint).
Reconstruction errors are averaged over 5 different random seeds and we also report the

standard deviation.
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Experiments on Partial Reconstruction: Results II
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(a) Default of Credit Card Client dataset

Figure 14: Results of reconstruction experiments with knowledge of some of the attributes. We
report the reconstruction error (for the unknown attributes) as a function of the number of

known attributes in the forest’s training set. For these experiments, all forests are learnt using
scikit-learn’s default configuration (i.e., |T | = 100 and no maximum depth constraint).
Reconstruction errors are averaged over 5 different random seeds and we also report the

standard deviation.

Backup Slides 19 / 19


	Background
	Illustrative Example: Reconstruction from Tree-Based Models
	DRAFT: Dataset Reconstruction from Tree Ensembles
	Experimental Study
	Discussion
	References
	Appendix
	Backup Slides


