Position: Automatic Environment Shaping is the Next Frontier in RL

Younghyo Park*, Gabriel B. Margolis*, and Pulkit Agrawal

Position: Automatic Environment Shaping is the Next Frontier in RL

Younghyo Park*, Gabriel B. Margolis*, and Pulkit Agrawal \leftarrow We all work on Robotics!

Effort

Effort

Effort

Promise of RL

is a general-purpose, automated optimal control solver for any MDP setting."

Fixing RL vs **Environment Shaping**

Figure 2: An illustration of reward hacking when optimizing a hackable proxy. The true reward first increases and then drops off, while the proxy reward $\begin{array}{c} \text{and} \\ \text{continuous} \end{array}$ **Drt**

 1 Skalse et al., Defining and Characterizing Reward Hacking [NeurlPS 2022]

graduate student descent

Noun [edit]

1. (*machine learning, humorous*) The process of choosin

ignec Time (compute the compute Time of the Compute Human of the Compute Time of the Compute Time of the Compute Tim $\overline{\mathsf{H}}$ all

The community should focus on the following things to scale up the success of RL for many domains.

The community should focus on the following things to scale up the success of RL for many domains.

1. Prioritize research of **automating** the heuristic process of **Environment Shaping**.

The community should focus on the following things to scale up the success of RL for many domains.

- 1. Prioritize research of **automating** the heuristic process of **Environment Shaping**.
- 2. Develop **better RL algorithms** that doesn't require heuristic environment shaping in the first place.

The community should focus on the following things to scale up the success of RL for many domains.

- 1. Prioritize research of **automating** the heuristic process of **Environment Shaping**. **Environment Shaping**
- 2. Develop **better RL algorithms** that doesn't require heuristic environment shaping in the first place.
- 3. Benchmarking RL algorithms on **unshaped environments**.

and how crucial they are to make RL work.

A. Action Space Shaping

Unshaped Action Space

Letting the neural network policy directly predict acceptable motor commands

```
def get_actuation(self, res):
  # policy output will be directly
             sent as motor command
  return res
```


(Example) **Shaped Action Space**

It's a necessary evil; PPO cannot solve most tasks without action space shaping.

B. Observation Space Shaping

B. Observation Space Shaping

Available from simulation

Unshaped Observation Space Concatenation of entire raw oracle states.

```
def get_observation(self):
 obs = torch.cat([self.dof_pos, self.dof_pel,self.drawer_state], dim = -1)
  return obs
```
$obs = env.get_observation()$

B. Observation Space Shaping

Available from simulation

Contire oracle states Observation Space Shaper \rightarrow Observation \rightarrow Policy

Unshaped Observation Space

Concatenation of entire raw oracle states.

def get_observation(self): obs = torch.cat([self.dof_pos, self.dof_vel, self.drawer_state], $dim = -1$) return obs

Shaped Observation Space

Concatenation of hand-crafted terms carefully engineered for this specific task.

def get_observation(self):

```
# gripper pose
ef pose = forward kinematics(self.joint pos)
```

```
# drawer handle pose
handle pose = self.drawer_handle_pose
```
vector between gripper and drawer handle vec = torch.inverse(ef_pose) @ handle_pose

```
obs = torch.cat([scale(self.join_tots),scale(self.joint_vel),
                 scale(self.drawer opened),
                 ef pose, handle pose, vec], dim = -1)
return obs
```
B. Observation Space Shaping

It's a **necessary evil;** PPO cannot solve most tasks without observation space shaping.

C. Terminal Condition Shaping

D. Reset Strategy Shaping

E. Curriculum Shaping

Check out our paper to see more examples of environment shaping and how it's affecting the RL performance.

-
-
-
- -
	-
	-

How should we parametrize different environment shapers?

 θ \rightarrow ?

How should we parametrize different environment shapers?

def compute_reward(self): # Forward velocity reward forward_velocity = self.center vel[2] reward_forward_velocity = self.coef['forward_velocity'] * forward_velocity

Goal velocity alignment velocity_diff = torch.norm(self.center vel - self.goal_vel) reward_goal_velocity = $-$ self.coef['goal_velocity'] $*$ velocity_diff

Energy efficiency reward (negative of the sum of absolute velocities) energy efficiency = $torch.sum(torch(abs(self.dot well))$ reward energy efficiency = $\frac{1}{2}$ self.coef['energy efficiency'] * energy efficiency

Joint acceleration penalty

joint_acceleration = torch.norm(self.dof vel[1:] - self.dof vel[:-1]) $reward_joint_acceleration_penalty = -self.coeff['joint_acceleration_penalty'$ joint acceleration

```
# Joint velocity penalty
```

```
joint_velocity_penalty = torch.norm(self.dof vel)
    reward_joint_velocity_penalty = \frac{1}{2}-self.coef['joint_velocity_penalty'] *
joint velocity penalty
```
How should we parametrize different environment shapers?

def compute_reward(self): # Forward velocity reward forward_velocity = self.center vel[2] reward_forward_velocity = self.coef['forward_velocity'] * forward_velocity

Goal velocity alignment velocity diff = torch.norm(self.center vel - self.goal vel) reward_goal_velocity = $-$ self.coef['goal_velocity'] $*$ velocity_diff

Energy efficiency reward (negative of the sum of absolute velocities) energy efficiency = t orch.sum(t orch.abs(self.dof vel)) reward_energy_efficiency = $\frac{1}{2}$ self.coef['energy_efficiency'] * energy_efficiency

Joint acceleration penalty

```
joint acceleration = torch.norm(self.dof vel[1:] - self.dof vel[:-1])
   reward_joint_a cceleration_penalty = -self.coeff'joint_a cceleration_penalty']joint acceleration
```
What if we want to try out

different reward terms?

int_velocity_penalty'] *

el I

joint velocity penalty

How should we parametrize different environment shapers?

Optimizing Environment Shaping as a Code Generation Problem

def get_observation(self): # gripper pose

 $ef_{\text{pos}} = forward_k$ inematics(self.joint_pos)

drawer handle pose handle_pose = self.drawer_handle_pose

vector between gripper and drawer handle vec = torch.inverse(ef_pose) @ handle_pose

 $obs = torch.cat([scale(self.join_tpos))$ scale(self.joint_vel), scale(self.drawer opened), ef_pose, handle_pose, vec], dim = -1) return obs

def get_actuation(self, res):

 cur target = cos $prev$ target = ci

compute the mo

 $torques = coefs$

return torques

policy designed to predict absolute joint targets.

Python Code

scale the policy output cur_target = scale(res, lower_bound, upper_bound)

- coefs['dgain'] * self.dof vel

compute the moving average of targets

def compute reward(self): forward velocity = self.center vel[2] reward_forward_velocity = self.coef['forward_velocity'] * forward_velocity

velocity_diff = torch.norm(self.center_vel - self.goal_vel) reward goal velocity = -self.coef['goal velocity'] * velocity diff

Energy efficiency reward (negative of the sum of absolute velocities) energy efficiency = torch.sum(torch.abs(self.dof vel)) reward_energy_efficiency = -self.coef['energy_efficiency'] * energy_efficiency

joint_acceleration = torch.norm(self.dof_vel[1:] - self.dof_vel[:-1]) reward_joint_acceleration_penalty = -self.coef['joint_acceleration_penalty'] * oint acceleration

Joint velocity penalty joint_velocity_penalty = torch.norm(self.dof_vel) reward joint velocity penalty = -self.coef | joint velocity penalty | \star joint_velocity_penalty

 $fall_penalty = 0.0$ if self.com height < 0.5 : fall penalty = $self.coeff['fall penalty']$ reward_fall_penalty = -fall_penalty

Upright bonus $upright_b$ bonus = self.dof $pos[0]$ reward_upright_bonus = self.coef['upright_bonus'] * upright_bonus

jerk = torch.norm(self.dof_vel[2:] - $2*self.dof_vel[1:-1]$ + self.dof_vel[:-2]) reward_smoothness_bonus = -self.coef['smoothness_bonus'] * jerk

Representing Environment Shaping with reward_energy_efficiency + reward_joint_acceleration_penalty + reward_joint_velocity_penalty + reward fall penalty + reward_upright_bonus + reward_smoothness_bonus

return total_reward

Ma et al., *Eureka: Human-level reward design via coding large language models* (2023)

Can we extend the LLM-based automation paradigm to other environment components?

Can we extend the LLM-based automation paradigm to other environment components?

Can we extend the LLM-based automation paradigm to other environment components?

But we need to shape the entire environment as its entirety;

Sequential Optimization

(i.e., shape the reward \rightarrow shape the action space \rightarrow shape the observation space)

leads to Local Optima!

min reward

max reward

Shaping the entire environment is much harder than shaping one component. **but the optimization landscape is non-convex, we need joint optimization.**

min reward

max reward

Path forward

We argued that:

The community should focus on the following things to scale up the success of RL:

- 1. Prioritize research of **automating** the heuristic process of **Environment Shaping**.
- 2. Develop **better RL algorithms** that doesn't require heuristic environment shaping in the first place.
- 3. Benchmarking RL algorithms on **unshaped environments**.

EnvCoderBench

- Collection of **unshaped** robotics RL environments
- Easy-to-use API for LLM-based automated shaping
- Support for parallel RL training of multiple shaping candidates for efficient evaluation.

Opposing Positions

I want you to learn how to unpack all these boxes by tmrw.

Automatic Behavior Generator

Time Compute Human Effort

I want you to learn how to unpack all these boxes by tmrw.

Automatic Behavior Generator

Reinforcement Learning

Robotic Corp. Foundation Model Reinforcement Learning

We still believe in the **power of RL** as a tool to generate robust, generalizable, super-human behaviors that cannot be easily achieved with Imitation Learning.

The behaviors generated by RL can also be another data source to train those foundation models;

Making RL easier to use will be the start of a **virtuous data cycle for embodied intelligence**.

Position: Automatic Environment Shaping is the Next Frontier in RL

Younghyo Park*, Gabriel B. Margolis*, and Pulkit Agrawal

