Position: Automatic Environment Shaping is the Next Frontier in RL

Younghyo Park*, Gabriel B. Margolis*, and Pulkit Agrawal

Position: Automatic Environment Shaping is the Next Frontier in RL

Effort

Time Compute Human Effort

Time Compute Human Effort

Promise of RL

is a general-purpose, automated optimal control solver for any MDP setting."

Fixing RL vs Environment Shaping

Figure 2: An illustration of reward hacking when optimizing a hackable proxy. The true reward first increases and then drops off, while the proxy reward continues to increase.

¹ Skalse et al., Defining and Characterizing Reward Hacking [NeurIPS 2022]

²https://en.wiktionary.org/wiki/graduate_student_descent

The community should focus on the following things to scale up the success of RL for many domains.

The community should focus on the following things to scale up the success of RL for many domains.

1. Prioritize research of **automating** the heuristic process of **Environment Shaping**.

The community should focus on the following things to scale up the success of RL for many domains.

- 1. Prioritize research of **automating** the heuristic process of **Environment Shaping**.
- 2. Develop **better RL algorithms** that doesn't require heuristic environment shaping in the first place.

The community should focus on the following things to scale up the success of RL for many domains.

- 1. Prioritize research of automating the heuristic process of **Environment Shaping**.
- 2. Develop **better RL algorithms** that doesn't require heuristic environment shaping in the first place.
- 3. Benchmarking RL algorithms on unshaped environments.

and how crucial they are to make RL work.

A. Action Space Shaping

Unshaped Action Space

Letting the neural network policy directly predict acceptable motor commands

```
def get_actuation(self, res):
    # policy output will be directly
    # sent as motor command
    return res
```


(Example) Shaped Action Space

It's a necessary evil; PPO cannot solve most tasks without action space shaping.

AllegroHand	Reward	Change	Anymal	Reward	Change	Humanoid	Reward	Change
all shaped	38777	_	all shaped	-45	-	all shaped	7554	-
sparse reward	0	$\downarrow 38777$	sparse reward	-2789	$\downarrow 2744$	sparse reward	5237	$\downarrow 2317$
unshaped action space	21530	$\downarrow 17247$	unshaped action space	-2499	$\downarrow 2454$	unshaped action space	67	17487
unshaped observation space	2114	$\downarrow 36663$	unshaped observation space		$\downarrow 2611$	unshaped observation space	0	$\downarrow 7554$
no early termination		$\downarrow 38777$	no early termination		$\uparrow 2$	no early termination	705	6849
single initial state		$\downarrow 38777$	single initial state	-17	$\uparrow 28$	single initial state	5735	
single goal state	141155	$\uparrow 102378$	single goal state	-2516	$\downarrow 2470$	0		v

B. Observation Space Shaping

B. Observation Space Shaping

Unshaped Observation Space Concatenation of entire raw oracle states.

obs = env.get_observation()

B. Observation Space Shaping

Entire oracle states ______Available from simulation _____

Observation Space Shaper

 \rightarrow Observation \rightarrow Policy

Unshaped Observation Space

Concatenation of entire raw oracle states.

Shaped Observation Space

Concatenation of hand-crafted terms carefully engineered for this specific task.

def get_observation(self):

```
# gripper pose
ef_pose = forward_kinematics(self.joint_pos)
```

```
# drawer handle pose
handle_pose = self.drawer_handle_pose
```

vector between gripper and drawer handle
vec = torch.inverse(ef_pose) @ handle_pose

B. Observation Space Shaping

It's a necessary evil; PPO cannot solve most tasks without observation space shaping.

AllegroHand	Reward	Change	Anymal	Reward	Change	Humanoid	Reward	Change
all shaped	38777	_	all shaped	-45	-	all shaped	7554	-
sparse reward unshaped action space	$\begin{array}{c} 0 \\ 21530 \end{array}$	$\begin{array}{c}\downarrow 38777\\\downarrow 17247\end{array}$	sparse reward unshaped action space	$-2789 \\ -2499$	$\begin{array}{c} \downarrow 2744 \\ \downarrow 2454 \end{array}$	sparse reward	5237 67	$\begin{array}{c}\downarrow 2317\\7487\end{array}$
unshaped observation space	2114	\downarrow 36663	unshaped observation space	-2656	$\downarrow 2611$	unshaped observation space	0	1 7554
no early termination single initial state single goal state	$\begin{array}{c} 0 \\ 0 \\ 141155 \end{array}$	↓ 38777 ↓ 38777 ↑ 102378	no early termination single initial state single goal state	$-43 \\ -17 \\ -2516$	$egin{array}{c} \uparrow 2 \ \uparrow 28 \ \downarrow 2470 \end{array}$	no early termination single initial state	705 5735	$\downarrow 6849$ $\downarrow 1819$

C. Terminal Condition Shaping

D. Reset Strategy Shaping

E. Curriculum Shaping

AllegroHand	Reward	Change	Anymal	Reward	Change	Humanoid	Reward	Change
all shaped	38777	-	all shaped	-45	_	all shaped	7554	-
sparse reward unshaped action space	$\begin{array}{c} 0 \\ 21530 \end{array}$	$\begin{array}{c}\downarrow 38777\\\downarrow 17247\end{array}$	sparse reward unshaped action space	$-2789 \\ -2499$	$\downarrow 2744$ $\downarrow 2454$	sparse reward	5237 67	$\downarrow 2317$ $\downarrow 7487$
unshaped observation space	2114	$\downarrow 36663$	unshaped observation space	-2656	$\downarrow 2611$	unshaped observation space	0	$\downarrow 7554$
no early termination	0	$\downarrow 38777$	no early termination	-43	$\uparrow 2$	no early termination	705	$\downarrow 6849$
single initial state	0	$\downarrow 38777$	single initial state	-17	$\uparrow 28$	single initial state	5735	$\downarrow 1819$
single goal state	141155	$\uparrow 102378$	single goal state	-2516	$\downarrow 2470$			

Check out our paper to see more examples of environment shaping and how it's affecting the RL performance.

How should we parametrize different environment shapers?

 θ

ef	get_ob	oservatio	on(self):
	# gri ef_po	def get	_actuation(self, res):
	# dra handl	# po # sc	<pre>def compute_reward(self): # Forward velocity reward </pre>
	# vec	cur_	forward_velocity = self.center_vel[2] reward_forward_velocity = self.coef['forward_velocity'] * forward_velocit
	obs =	cur_ prev	<pre># Goal velocity alignment velocity_diff = torch.norm(self.center_vel - self.goal_vel) reward_goal_velocity = -self.coef['goal_velocity'] * velocity_diff</pre>
	retur	# co torq	<pre># Energy efficiency reward (negative of the sum of absolute velocities) energy_efficiency = torch.sum(torch.abs(self.dof_vel)) reward_energy_efficiency = -self.coef['energy_efficiency'] * energy_efficiency</pre>
		retu	<pre># Joint acceleration penalty joint_acceleration = torch.norm(self.dof_vel[1:] - self.dof_vel[:-1]) reward_joint_acceleration_penalty = -self.coef['joint_acceleration_penalt joint_acceleration</pre>

How should we parametrize different environment shapers?

def compute_reward(self):
 # Forward velocity reward
 forward_velocity = self.center_vel[2]
 reward_forward_velocity = self.coef['forward_velocity'] * forward_velocity

Goal velocity alignment
velocity_diff = torch.norm(self.center vel - self.goal_vel)
reward_goal_velocity = -self.coef['goal_velocity'] * velocity_diff

Energy efficiency reward (negative of the sum of absolute velocities)
energy_efficiency = torch.sum(torch.abs(self.dof_vel))
reward_energy_efficiency = {self.coef['energy_efficiency'] * energy_efficiency

Joint acceleration penalty

joint_acceleration = torch.norm(self.dof vel[1:] - self.dof vel[:-1])
reward_joint_acceleration_penalty = -self.coef['joint_acceleration_penalty'] *
joint_acceleration

```
# Joint velocity penalty
```

```
joint_velocity_penalty = torch.norm(self.dof_vel)
    reward_joint_velocity_penalty = -self.coef['joint_velocity_penalty'] *
joint_velocity_penalty
```

How should we parametrize different environment shapers?

def compute_reward(self):
 # Forward velocity reward
 forward_velocity = self.center_vel[2]
 reward_forward_velocity = self.coef['forward_velocity'] * forward_velocity

Goal velocity alignment
velocity_diff = torch.norm(self.center vel - self.goal_vel)
reward_goal_velocity = -self.coef['goal_velocity'] * velocity_diff

Energy efficiency reward (negative of the sum of absolute velocities)
energy_efficiency = torch.sum(torch.abs(self.dof_vel))
reward_energy_efficiency = {self.coef['energy_efficiency'] * energy_efficiency

Joint acceleration penalty

```
joint_acceleration = torch.norm(self.dof vel[1:] - self.dof vel[:-1])
reward_joint_acceleration_penalty = -self.coef['joint_acceleration_penalty'] *
joint_acceleration
```

What if we want to try out

different reward terms?

int_velocity_penalty'] *

el

joint_velocity_penalty

How should we parametrize different environment shapers?

Optimizing Environment Shaping as a <mark>Code</mark> Generation Problem

def get_observation(self):

gripper pose
ef_pose = forward_kinematics(self.joint_pos)

drawer handle pose
handle_pose = self.drawer_handle_pose

vector between gripper and drawer handle vec = torch.inverse(ef_pose) @ handle_pose

def get_actuation(self, res):

policy designed to predict absolute joint targets.

scale the policy output
cur_target = scale(res, lower_bound, upper_bound)

def compute_reward(self):
 # Forward velocity reward
 forward_velocity = self.center_vel[2]
 reward_forward_velocity = self.coef['forward_velocity'] * forward_velocity

Goal velocity alignment
velocity_diff = torch.norm(self.center_vel - self.goal_vel)
reward_goal_velocity = -self.coef['goal_velocity'] * velocity_diff

Energy efficiency reward (negative of the sum of absolute velocities)
energy_efficiency = torch.sum(torch.abs(self.dof_vel))
reward_energy_efficiency = -self.coef['energy_efficiency'] * energy_efficiency

Joint acceleration penalty
joint_acceleration = torch.norm(self.dof_vel[1:] - self.dof_vel[:-1])
reward_joint_acceleration_penalty = -self.coef['joint_acceleration_penalty'] *
oint_acceleration

Joint velocity penalty
joint_velocity_penalty = torch.norm(self.dof_vel)
reward_joint_velocity_penalty = -self.coef['joint_velocity_penalty'] *
joint_velocity_penalty

Fall penalty (if the center of mass is too low)
fall_penalty = 0.0
if self.com_height < 0.5:
 fall_penalty = self.coef['fall_penalty']
reward_fall_penalty = -fall_penalty</pre>

Upright bonus
upright_bonus = self.dof_pos[0]
reward_upright_bonus = self.coef['upright_bonus'] * upright_bonus

Smoothness bonus (negative of the jerk)
jerk = torch.norm(self.dof_vel[2:] - 2*self.dof_vel[1:-1] + self.dof_vel[:-2])
reward_smoothness_bonus = -self.coef['smoothness_bonus'] * jerk

compute the moving average of targets
cur_target = coe
 + (
 Prev_target = cu
 * compute the mo
 Python Code
 torques = coefs['dgain'] * self.dof_vel
 reward_smoothness_bonus +
 reward_smo

Ma et al., Eureka: Human-level reward design via coding large language models (2023)

Can we extend the LLM-based automation paradigm to other environment components?

shaping component	Eureka (Ma et al., 2023)	Human Design (Makoviychuk et al., 2021)	Automation Performance	
*reward	0.986	0.973	$\uparrow 0.013$	
[†] observation	0.967	0.973	$\downarrow 0.006$	
[†] action	0.982	0.973	$\uparrow 0.009$	
$^{\circ}$ reward \times observation	0.196	0.973	$\downarrow 0.777$	
$^{\circ}$ reward \times action	0.536	0.973	$\downarrow 0.437$	
$^{\circ}$ reward × observation × action	N/A	0.973	N/A	

Can we extend the LLM-based automation paradigm to other environment components?

shaping component	Eureka (Ma et al., 2023)	Human Design (Makoviychuk et al., 2021)	Automation Performance	
*reward	0.986	0.973	$\uparrow 0.013$	
[†] observation	0.967	0.973	$\downarrow 0.006$	
[†] action	0.982	0.973	$\uparrow 0.009$	
$^{\circ}$ reward \times observation	0.196	0.973	$\downarrow 0.777$	
$^{\circ}$ reward \times action	0.536	0.973	$\downarrow 0.437$	
$^{\circ}$ reward × observation × action	N/A	0.973	N/A	

Can we extend the LLM-based automation paradigm to other environment components?

shaping component	Eureka (Ma et al., 2023)	Human Design (Makoviychuk et al., 2021)	Automation Performance	
*reward	0.986	0.973	$\uparrow 0.013$	
[†] observation	0.967	0.973	$\downarrow 0.006$	
[†] action	0.982	0.973	$\uparrow 0.009$	
$^{\circ}$ reward \times observation	0.196	0.973	$\downarrow 0.777$	
$^{\circ}$ reward \times action	0.536	0.973	$\downarrow 0.437$	
$^{\circ}$ reward \times observation \times action	N/A	0.973	N/A	

But we need to shape the entire environment as its entirety;

Sequential Optimization

(i.e., shape the reward →
 shape the action space →
 shape the observation space)

leads to Local Optima!

min reward

max reward

Shaping the entire environment is much harder than shaping one component. but the optimization landscape is non-convex, we need joint optimization.

Path forward

We argued that:

The community should focus on the following things to scale up the success of RL:

- 1. Prioritize research of **automating** the heuristic process of **Environment Shaping**.
- 2. Develop **better RL algorithms** that doesn't require heuristic environment shaping in the first place.
- 3. Benchmarking RL algorithms on unshaped environments.

EnvCoderBench

- Collection of **unshaped** robotics RL environments
- Easy-to-use API for LLM-based automated shaping
- Support for parallel RL training of multiple shaping candidates for efficient evaluation.

Opposing Positions

I want you to learn how to unpack all these boxes by tmrw.

Automatic Behavior Generator

Time Compute Human Effort

I want you to learn how to unpack all these boxes by tmrw.

Automatic **Behavior Generator**

Reinforcement Learning

Effort

Hmm, I don't buy that.

Reinforcement Learning Robotic Foundation Model

We still believe in the **power of RL** as a tool to generate robust, generalizable, super-human behaviors that cannot be easily achieved with Imitation Learning.

The behaviors generated by RL can also be another data source to train those foundation models;

Making RL easier to use will be the start of a <u>virtuous data cycle for embodied intelligence</u>.

Position: Automatic Environment Shaping is the Next Frontier in RL

Younghyo Park*, Gabriel B. Margolis*, and Pulkit Agrawal

