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Background

Vulnerability of Deep Reinforcement Learning

@ Deep reinforcement learning agents are quite vulnerable to minor
perturbations in their state observations.
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Image Source: Zhang et al. 2020.
This poses a major challenge for deploying DRL in the real world.
ICML 2024, Vienna 2/21



Background Reinforcement Learning

Markov Decision Process: Formulation of RL
° M = (SaAa r7]P>77),UJ0)
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State space S C R is a compact set.
Action space A is a finite set.

Reward function r : S x A — R.
Transition dynamics P: S x A — A(S), where A (S) is the

probability space over S.
» Discount factor v € [0,1).
» Initial state distribution po € A (S).
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etz e el
Bellman Optimal Policy: Objective of RL

o Given a MDP M, for any policy 7, define
» value function: VT (s) = Erurp [D oo v r(Se, at)lso = s],
» Q function: QR,(s,a) =Ernp [> ooV r(se, ae)|so =s,a0 = a],
where trajectory T = (sp, a0, 0, S1, 81,1 - - - ).
@ Objective:
max Vi(s), for a given state s.
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@ Given a MDP M, for any policy 7, define
» value function: VT (s) = Erurp [D oo v r(Se, at)lso = s],
» Q function: QR,(s,a) =Ernp [> ooV r(se, ae)|so =s,a0 = a],
where trajectory T = (sp, a0, 0, S1, 81,1 - - - ).
@ Objective:
max Vi(s), for a given state s.

@ There exists a stationary and deterministic policy 7* that
simultaneously maximizes V7™ (s) for all s € S, and Q* := Q™
satisfies the Bellman optimality equations, i.e.

*

Q'(5.2) = (5:8) 4 1Evriien) | mx @ (5]
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Related Work and Challenges

State-Adversarial MDP (Zhang et al. 2020): Elegant

Formulation of RL against Perturbations on Observations
o M, = (S, A, r,Pv,~v,u)
» Adversary v: S — S, s+—s, € B(s).
e value function: V™(s) = Eropp [ 1o Y r(Se; at)|so = 5],
o Q function: Q™ (s,a) = Eroup [D 100V r(st,a)|s0 = s, a0 = al.

adversary v(s)
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Challenges of SA-MDP

Objective of SA-MDP: Optimal Robust Policy (ORP)
@ Strongest Adversary: Given a policy 7, the strongest adversary
v*(m) = arg min,, V™ exists.
@ An ORP 7* should maximize the value function against this strongest
adversary for all states, i.e. V™ " (7)(s) = max, V™" (")(s), Vs.
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Challenges of SA-MDP

Objective of SA-MDP: Optimal Robust Policy (ORP)
@ Strongest Adversary: Given a policy 7, the strongest adversary
v*(m) = argmin, V™ exists.
@ An ORP 7* should maximize the value function against this strongest
adversary for all states, i.e. V™ o (7")(s) = max, V™ (7)(s), Vs.

However, unlike standard MDPs, ORP of SA-MDPs may not exist.

@ Deterministic policies are not sufficient to achieve ORP.

@ Even stochastic ORP may not always exist.

This reveals a potential conflict between robustness and policy optimality,
making it challenging to enforce strict robustness constraints.
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Optimal Adversarial Robustness

When does the ORP exist?
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When does the ORP exist?

Under the Consistency Assumption of
Policy, ORP exists, and aligns with the
Bellman optimal policy!
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Consistency Assumption of Policy (CAP)

Define the intrinsic state e-neighbourhood for any state s as

BX(s) := {s' € S|s’ € B(s),argmax Q*(s, a) = arg max Q*(s, a)} :
a a
Assumption (Consistency Assumption of Policy)

For all s € S, its adversary e-perturbation set is the same as the intrinsic
state e-neighbourhood, i.e., B.(s) = B(s).
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Consistency Assumption of Policy (CAP)

Define the intrinsic state e-neighbourhood for any state s as

BX(s) := {s’ € S|s’ € B(s),argmax Q*(s, a) = arg max Q*(s, a)} :
a a

Assumption (Consistency Assumption of Policy)

For all s € S, its adversary e-perturbation set is the same as the intrinsic
state e-neighbourhood, i.e., B.(s) = B(s).

@ The set of states violating CAP is nearly empty.

Theorem (Rationality of the CAP)

Let Spin denote the set of states violating the CAP. Then, we have that
Snin € Spy U Sg + B, where Sy, is the state set where the optimal action

is not unique, and Sy is the set of discontinuous points that cause the
optimal action to change. These sets are nearly empty in practical tasks.
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Existence of the Optimal Robust Policy under CAP

Define the consistent adversarial robust (CAR) operator as

(TearQ) (s,a) = r(s,a) + YEgp([s,0) [ min ) Q <s’, argmax Q (s, asé))]

sl €Bc(s’ ay
Sy

@ T is not contractive.
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Existence of the Optimal Robust Policy under CAP

Define the consistent adversarial robust (CAR) operator as

(Tcar Q) (s,8) = r(s,a) + VEs/p(.s,2) [ min ) Q (s', arg max Q@ (SL, asé))]

sl €Bc(s’ ay
Sy

@ T is not contractive.

Theorem (Relation between Q* and Q™ ¥ (™))

o If the optimal adversarial action-value function Q™ °*" (™) under the
strongest adversary exists for all s € S and a € A, then it is the fixed
point of CAR operator.

o If the CAP holds, then Q* is the fixed point of CAR operator T¢a,.
Furthermore, Q* is the optimal adversarial action-value function
under the strongest adversary, i.e., @(s,a) = Q™ °"(7")(s, a), for all
seS andac A
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Policy Robustness under Bellman p-error

Bellman optimal policy doubles as ORP!
— Improving adversarial robustness does not
require sacrificing natural performance.
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Policy Robustness under Bellman p-error

Bellman optimal policy doubles as ORP!
— Improving adversarial robustness does not
require sacrificing natural performance.

Why do conventional DRL algorithms, which aim
for the Bellman optimal policy, fail to ensure
adversarial robustness?
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Policy Robustness under Bellman p-error

Bellman optimal policy doubles as ORP!
— Improving adversarial robustness does not
require sacrificing natural performance.

Why do conventional DRL algorithms, which aim
for the Bellman optimal policy, fail to ensure
adversarial robustness?

Infinity-error is necessary!

Previously 1-error X
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Policy Robustness under Bellman p-error

L> is Necessary for Adversarial Robustness

e For any Banach space B, if [|Qy — Q*||3 =0, then Qp = Q*.
o However, in practice, 0 < [|[Qy — Q*|lzp =01 = Q=7
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Policy Robustness under Bellman p-error

L> is Necessary for Adversarial Robustness

e For any Banach space B, if [|Qy — Q*||3 =0, then Qp = Q*.
o However, in practice, 0 < [|[Qy — Q*|lzp =01 = Q=7

Theorem (Necessity of L*°-norm)

Let S Slb denote the set of states where the greedy policy according to @ is

suboptimal and S a%v denote the set of states within whose e-neighborhood
there exists the adversarial state. There exists an MDP instance such that
the following statements hold.

(1). Forany1l < p < oo andd > 0, there exists a function Q satisfying
1Q — Q*||, < & such that u (sjgb) = 0(5) yet (sj\;v) = u(S).
(2). There exists a 8 > 0 such that for any 0 < 6 < 8, and any function Q
satisfying ||Q — Q*|lcc < 6, we have that u (Ss(zb) = 0(0) and
u (sjgv) = 2¢ + 0 (5).

v
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Policy Robustness under Bellman p-error

Stability of Nonlinear Functional Equations

o ||Qs — Q*|| 3 cannot be directly measured.

@ Instead, minimize the Bellman error ||[TgQy — Qp||p to train Qp,
where Tg is the Bellman optimality operator.

@ We have shown that B should be L* (S x A).

B =7
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Policy Robustness under Bellman p-error

Stability of Nonlinear Functional Equations
o ||Qs — Q*|| 3 cannot be directly measured.
@ Instead, minimize the Bellman error ||[TgQy — Qp||p to train Qp,

where Tg is the Bellman optimality operator.
@ We have shown that B should be L* (S x A).

B =7
° [T86Qy— Qollp =0 = @Qp=Q"
0 0< [T — Qllp =01l = ||Q—Q"z<?

Definition (Stability of Functional Equations)

Given two Banach spaces By and By, if there exist > 0 and C > 0 such
that for all Q € By N By satisfying ||[TQ — Q||5, < d, we have that

|Q — Q*||n, < C||TQ — Q||B,, then we say a nonlinear functional
equation 7Q = Q is (B1, By)-stable.

o If TQ = Q is (B1, Ba)-stable, then ||Q — Q*|lz, = O (||TQ — Ql|5,),
as [|[TQ — Qllg, — 0, VQ € BN Bo.
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Policy Robustness under Bellman p-error

Stability of Bellman Optimality Equations

Theorem (Stable and Unstable Properties of 75 in LP Spaces)
® For any MDP M, let Cpp := sup(s ayesxa IP(- | s, a)||L%(S).
Assume p and q satisfy the following conditions:

1 | |
Gop< L pemaxdl, og (| A]) + ?g(#(S)) C p<g< oo
¥ log o

Then, Bellman optimality equation TgQ = Q is (L9, LP)-stable.
@ There exists an MDP such that for all 1 < g < p < oo, the Bellman
optimality equations TgQ = Q is not (L9, LP)-stable.

B’ should also be L (S x A).
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Policy Robustness under Bellman p-error

Stability of Deep Q-network (DQN) in Practice
Theorem (Stable and Unstable Properties of 7p in (p, dj ) Spaces)
o For any MDP M and policy 7, let Cp  := sup(s ) [|P(- | 5,a)ll, e .

Lp—T

Assume Cdffo = inf(s 5 dJ (s,a) > 0 and p and q satisfy:

cu»,p<§; pZmax{l,|og(\«4\)+|og(u(8))}; <<

I L -
o8 7Ce,p

Then, Bellman optimality equation TgQ = Q is (Lq’dEO, Lp> -stable.
@ There exists an MDP M such that for all w satisfying
Md;ro 1= SUP(s 2 df{o(s, a) < oo, Bellman optimality equation

TeQ = Q is not (Lq’dZZO, Lp) -stable, for all1 < g < p < oo.

v

| T8 Qp — QGHOO,d;Tg is crucial for ensuring both the natural
performance and robustness of DQN.
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At
Consistent Adversarial Robust DQN (CAR-DQN)

@ Theoretical Objective: Bellman Infinity-error, i.e.,
['car(a) - ”7—BQO - Q@|’007d:g-

@ Surrogate Objective:

£2f(9) = Z «;  max
iElB‘ sy EBc(s;

ri + 7 max Qs(si,a') — Qo(su, ai)|,

where
e% maxs,, |r,-+'y max Qg(s;,a’)—Qg(sy,a,-)|

o = .
Zie|8| e% maxs,, |r,-+'y max, Qg(sl.’,a’)ng(sl,,a,-)|
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CAR-DQN Experiments

Natural and

Robust Returns Show Consistency
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CAR-DQN exhibits consistent
natural and robust performance.
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CAR-DQN Experiments

Bellman Infinity-error is Necessary

Environment | Norm Natural PGD MinBest ACR

LT 21.0+0.0 —21.0+0.0 —21.0+0.0 0

Pong L? 21.0+0.0 —21.0+£0.0 —20.8+0.1 0
L™ 21.0£0.0 21.0+0.0 21.0+0.0 0.985

LT 33.9+0.1 0.0+0.0 0.0+ 0.0 0

Freeway L? 21.8+0.3 21.7+£0.3 22.1+£0.3 0
L™ 33.3+0.1 33.2+0.1 33.2+0.1 0.981

LT 1325.5 £ 5.7 27.0 +2.0 0.0+0.0 0

BankHeist L? 1314.5 £ 4.0 185+1.5 22.5 + 2.6 0
L™ 1356.0 £1.7 1356.5 + 1.1 1356.5+1.1 0.969

LT 43795 + 1066 040 0+0 0

RoadRunner L? 30620 + 990 040 0£0 0
L> | 49500 £+ 2106 | 48230 +1648 48050 1642 0.947

Ablation studies across different LP spaces
confirm our theoretical findings on
the necessity of the Bellman infinity-error for robustness.
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Bxperiments
CAR-DQN Shows Superior Natural and Robust Returns

Robust
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Pong
Model Natural FGD MinBest __ACR Natural FGD MinBest ACR
Reward <=1/25 Reward =1/75
Standard DQN 21.0£00 | 21.0£00 210£00 0 BIT2= 22£19 0.0=0.0 0
PGD SA-DQN 21.0£00 | 2L0£00 2L.0£00 0 RI=14 S350 11180£63 0
CAR-DQN (Ours) | 2L.0£0.0 | 21.0£0.0 21000 0 1307.0=6.1 | 1243274  12426+84 0
SA-DQN 2L0L00 | 2L0L£0.0  200L£0.0 L000 JESw 12322125 0.991
Convex | RADIAL-DQN | 21.0£0.0 | 21.0£00 21.0+0.0 0808 | 13{1.8+38 | 1341.8+38 13418+38 0982
Relaxation | WocaR-DQN | 21.0£0.0 | 21.0£00  21.0£00 0979 | 13150£6.1 | 13120£6.1  13120+61  0.987
CAR-DQN (Ours) | 21.0+0.0 | 21.0£0.0  21.0£0.0 0.5 | 1349.6=3.0 | 1347.6£3.6 1347.4+3.6  0.974
Freeway RoadRunner
Model Natural PGD MinBest  ACR Natural PGD MinBest ACR
Reward €= 1/255 Reward = 1/255
Standard DQN 9100 | 00100 00100 0 41492 1 903 010 010
PGD SA-DQN 336£0.1 | 234202 20102 0250 | 333R0£611 | 204821087 24632 £812
CAR-DQN (Ours) | 34.0£0.0 | 33.7£0.1  33.7£0.1 0 || 497001015 | 43286 =801 48908 £ 1107
SA-DQN 300200 | 300200 30.0£00 1000 || 46372882 | 449601152 45226+ 1102
Convex | RADIAL-DQN | 331£0.1 | 33.3+£01 333+01 0998 | 462241133 | 45090+ 1112 46082 = 1128
Relaxation | WocaR-DQN | 308401 | 3L.0£00  3L.0£0.0 13686 +£1608 | 45636706 45636 + 706
CAR-DQN (Ours) | 33.210.1 0.1 0.1 49398 1 1106 | 49456 £ 992 47526 + 1132
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Summary
e Under the mild consistency assumption of policy, the optimal
robust policy exists and aligns with the Bellman optimal policy.

e This theoretically highlights that improving the adversarial
robustness does not require sacrificing natural performance.

e The Bellman infinity-error is necessary for achieving ORP, while
prior DRL algorithms lack robustness due to their use of 1-error.

o CAR-DQN employs a surrogate objective of the Bellman
infinity-error to learn both natural return and robustness.

Haoran Li (UCAS) Adversarial Robustness of RL ICML 2024, Vienna 19/21



Thank you!

Q& A

Feel free to contact Haoran Lil Welcome collaboration!
Contact: Q@leolmia or 1ihaoran21@mails.ucas.ac.cn

\\ \\\"/" /

S~

Tiande Guo Congying Han Zicheng Zhang Wang Luo  Yudong Hu Shichen Liao

Paper: arxiv.org/abs/2402.02165
Code: github.com/leoranimia/CAR-DQN
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https://github.com/leoranlmia/CAR-DQN

Thank you!
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