Towards Optimal Adversarial Robust Q-learning with Bellman Infinity-error

Haoran Li

lihaoran21@mails.ucas.ac.cn

Joint work with Zicheng Zhang, Wang Luo, Congying Han, Yudong Hu, Tiande Guo, Shichen Liao

School of Mathematical Sciences, University of Chinese Academy of Sciences

ICML 2024, Vienna

Vulnerability of Deep Reinforcement Learning

• Deep reinforcement learning agents are quite vulnerable to minor perturbations in their state observations.

PPO Humanoid Robust Sarsa Attack Reward: 719 (original 4386)

DDPG Ant Robust Sarsa Attack Reward: 258 (original 2462)

Image Source: Zhang et al. 2020.

This poses a major challenge for deploying DRL in the real world.

Haoran Li (UCAS)

Adversarial Robustness of RL

Markov Decision Process: Formulation of RL

- $\mathcal{M} = (\mathcal{S}, \mathcal{A}, r, \mathbb{P}, \gamma, \mu_0)$
 - State space $\mathcal{S} \subset \mathbb{R}^d$ is a compact set.
 - Action space A is a finite set.
 - Reward function $r : S \times A \longrightarrow \mathbb{R}$.
 - ► Transition dynamics ℙ: S × A → Δ(S), where Δ(S) is the probability space over S.
 - Discount factor $\gamma \in [0, 1)$.
 - Initial state distribution $\mu_0 \in \Delta(\mathcal{S})$.

Image Source: Sutton and Barto 2018

Bellman Optimal Policy: Objective of RL

- Given a MDP \mathcal{M} , for any policy π , define
 - ► value function: $V_{\mathcal{M}}^{\pi}(s) = \mathbb{E}_{\tau \sim \pi, \mathbb{P}}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s\right],$
 - Q function: $Q_{\mathcal{M}}^{\pi}(s,a) = \mathbb{E}_{\tau \sim \pi, \mathbb{P}}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) | s_{0} = s, a_{0} = a\right],$

where trajectory $\tau = (s_0, a_0, r_0, s_1, a_1, r_1 \dots)$.

• Objective:

 $\max_{\pi} V^{\pi}_{\mathcal{M}}(s), \quad \text{for a given state } s.$

Bellman Optimal Policy: Objective of RL

- Given a MDP \mathcal{M} , for any policy π , define
 - ► value function: $V_{\mathcal{M}}^{\pi}(s) = \mathbb{E}_{\tau \sim \pi, \mathbb{P}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s \right],$
 - ► Q function: $Q_{\mathcal{M}}^{\pi}(s, a) = \mathbb{E}_{\tau \sim \pi, \mathbb{P}}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s, a_0 = a\right],$

where trajectory $\tau = (s_0, a_0, r_0, s_1, a_1, r_1 \dots)$.

• Objective:

$$\max_{\pi} V_{\mathcal{M}}^{\pi}(s), \quad \text{for a given state } s.$$

 There exists a stationary and deterministic policy π* that simultaneously maximizes V^π(s) for all s ∈ S, and Q* := Q^{π*} satisfies the Bellman optimality equations, i.e.

$$Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim \mathbb{P}(\cdot | s, a)} \left[\max_{a' \in \mathcal{A}} Q^*(s', a') \right].$$

State-Adversarial MDP (Zhang et al. 2020): Elegant Formulation of RL against Perturbations on Observations

- $\mathcal{M}_{\nu} = (\mathcal{S}, \mathcal{A}, r, \mathbb{P}, \nu, \gamma, \mu)$ • Adversary $\nu : \mathcal{S} \longrightarrow \mathcal{S}, \quad s \longmapsto s_{\nu} \in B(s).$
- value function: $V^{\pi \circ \nu}(s) = \mathbb{E}_{\pi \circ \nu, \mathbb{P}}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s\right]$,
- Q function: $Q^{\pi \circ \nu}(s, a) = \mathbb{E}_{\pi \circ \nu, \mathbb{P}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s, a_0 = a \right].$

Challenges of SA-MDP

Objective of SA-MDP: Optimal Robust Policy (ORP)

- Strongest Adversary: Given a policy π , the strongest adversary $\nu^*(\pi) = \arg \min_{\nu} V^{\pi \circ \nu}$ exists.
- An ORP π^* should maximize the value function against this strongest adversary for all states, i.e. $V^{\pi^* \circ \nu^*(\pi^*)}(s) = \max_{\pi} V^{\pi \circ \nu^*(\pi)}(s), \forall s.$

6/21

Challenges of SA-MDP

Objective of SA-MDP: Optimal Robust Policy (ORP)

- Strongest Adversary: Given a policy π , the strongest adversary $\nu^*(\pi) = \arg \min_{\nu} V^{\pi \circ \nu}$ exists.
- An ORP π^* should maximize the value function against this strongest adversary for all states, i.e. $V^{\pi^* \circ \nu^*(\pi^*)}(s) = \max_{\pi} V^{\pi \circ \nu^*(\pi)}(s), \forall s.$

However, unlike standard MDPs, ORP of SA-MDPs may not exist.

- Deterministic policies are *not* sufficient to achieve ORP.
- Even stochastic ORP may not always exist.

This reveals a potential conflict between robustness and policy optimality, making it challenging to enforce strict robustness constraints.

6/21

When does the ORP exist?

When does the ORP exist?

Under the Consistency Assumption of Policy, ORP exists, and aligns with the Bellman optimal policy!

Consistency Assumption of Policy (CAP)

Define the intrinsic state ϵ -neighbourhood for any state s as

$$B^*_\epsilon(s) := \left\{ s' \in \mathcal{S} | s' \in B_\epsilon(s), rg\max_a Q^*(s',a) = rg\max_a Q^*(s,a)
ight\}.$$

Assumption (Consistency Assumption of Policy)

For all $s \in S$, its adversary ϵ -perturbation set is the same as the intrinsic state ϵ -neighbourhood, i.e., $B_{\epsilon}(s) = B_{\epsilon}^*(s)$.

Consistency Assumption of Policy (CAP)

Define the intrinsic state ϵ -neighbourhood for any state s as

$$B^*_\epsilon(s) := \left\{ s' \in \mathcal{S} | s' \in B_\epsilon(s), rg\max_a Q^*(s',a) = rg\max_a Q^*(s,a)
ight\}.$$

Assumption (Consistency Assumption of Policy)

For all $s \in S$, its adversary ϵ -perturbation set is the same as the intrinsic state ϵ -neighbourhood, i.e., $B_{\epsilon}(s) = B_{\epsilon}^*(s)$.

• The set of states violating CAP is nearly empty.

Theorem (Rationality of the CAP)

Let S_{nin} denote the set of states violating the CAP. Then, we have that $S_{nin} \subseteq S_{nu} \cup S_0 + B_{\epsilon}$, where S_{nu} is the state set where the optimal action is not unique, and S_0 is the set of discontinuous points that cause the optimal action to change. These sets are nearly empty in practical tasks.

Existence of the Optimal Robust Policy under CAP

Define the consistent adversarial robust (CAR) operator as

$$\left(\mathcal{T}_{car}Q\right)(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s,a)} \left[\min_{\substack{s'_{\nu} \in B_{\epsilon}(s')}} Q\left(s', \operatorname*{arg\,max}_{a_{s'_{\nu}}} Q\left(s'_{\nu}, a_{s'_{\nu}}\right)\right) \right]$$

• \mathcal{T}_{car} is not contractive.

Existence of the Optimal Robust Policy under CAP

Define the consistent adversarial robust (CAR) operator as

$$(\mathcal{T}_{car}Q)(s,a) = r(s,a) + \gamma \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s,a)} \left[\min_{\substack{s'_{\nu} \in B_{\epsilon}(s')}} Q\left(s', \operatorname*{arg\,max}_{a_{s'_{\nu}}} Q\left(s'_{\nu}, a_{s'_{\nu}}\right) \right) \right]$$

• \mathcal{T}_{car} is not contractive.

Theorem (Relation between Q^* and $Q^{\pi^* \circ \nu^*(\pi^*)}$)

- If the optimal adversarial action-value function Q^{π*}∘ν^{*}(π^{*}) under the strongest adversary exists for all s ∈ S and a ∈ A, then it is the fixed point of CAR operator.
- If the CAP holds, then Q* is the fixed point of CAR operator T_{car}. Furthermore, Q* is the optimal adversarial action-value function under the strongest adversary, i.e., Q*(s, a) = Q^{π*ον*(π*)}(s, a), for all s ∈ S and a ∈ A.

Bellman optimal policy doubles as ORP! — Improving adversarial robustness does not require sacrificing natural performance.

Bellman optimal policy doubles as ORP! — Improving adversarial robustness does not require sacrificing natural performance.

Why do conventional DRL algorithms, which aim for the Bellman optimal policy, fail to ensure adversarial robustness?

Bellman optimal policy doubles as ORP! — Improving adversarial robustness does not require sacrificing natural performance.

Why do conventional DRL algorithms, which aim for the Bellman optimal policy, fail to ensure adversarial robustness?

Infinity-error is necessary! Previously 1-error

L^{∞} is Necessary for Adversarial Robustness

- For any Banach space \mathcal{B} , if $\|Q_{\theta} Q^*\|_{\mathcal{B}} = 0$, then $Q_{\theta} = Q^*$.
- However, in practice, $0 < \|Q_{\theta} Q^*\|_{\mathcal{B}} = \delta \ll 1 \implies Q_{\theta} = ?$

L^{∞} is Necessary for Adversarial Robustness

- For any Banach space \mathcal{B} , if $\|Q_{\theta} Q^*\|_{\mathcal{B}} = 0$, then $Q_{\theta} = Q^*$.
- However, in practice, $0 < \|Q_{\theta} Q^*\|_{\mathcal{B}} = \delta \ll 1 \implies Q_{\theta} = ?$

Theorem (Necessity of L^{∞} -norm)

Let S_{sub}^Q denote the set of states where the greedy policy according to Q is suboptimal and S_{adv}^Q denote the set of states within whose ϵ -neighborhood there exists the adversarial state. There exists an MDP instance such that the following statements hold.

(1). For any $1 \le p < \infty$ and $\delta > 0$, there exists a function Q satisfying $\|Q - Q^*\|_p \le \delta$ such that $\mu\left(\mathcal{S}^Q_{sub}\right) = O(\delta)$ yet $\mu\left(\mathcal{S}^Q_{adv}\right) = \mu(\mathcal{S})$.

(2). There exists a $\overline{\delta} > 0$ such that for any $0 < \delta \leq \overline{\delta}$, and any function Q satisfying $||Q - Q^*||_{\infty} \leq \delta$, we have that $\mu\left(S_{sub}^Q\right) = O(\delta)$ and $\mu\left(S_{adv}^Q\right) = 2\epsilon + O(\delta)$.

Stability of Nonlinear Functional Equations

- $\|Q_{\theta} Q^*\|_{\mathcal{B}}$ cannot be directly measured.
- Instead, minimize the Bellman error $\|\mathcal{T}_B Q_\theta Q_\theta\|_{\mathcal{B}'}$ to train Q_θ , where \mathcal{T}_B is the Bellman optimality operator.
- We have shown that \mathcal{B} should be $L^{\infty}(\mathcal{S} \times \mathcal{A})$.

$$\mathcal{B}' = ?$$

Stability of Nonlinear Functional Equations

- $\| \mathcal{Q}_{ heta} \mathcal{Q}^* \|_{\mathcal{B}}$ cannot be directly measured.
- Instead, minimize the Bellman error $\|\mathcal{T}_B Q_{\theta} Q_{\theta}\|_{\mathcal{B}'}$ to train Q_{θ} , where \mathcal{T}_B is the Bellman optimality operator.
- We have shown that $\mathcal B$ should be $L^{\infty}(\mathcal S \times \mathcal A)$.

$$\mathcal{B}' = ?$$

•
$$\|\mathcal{T}_B Q_{\theta} - Q_{\theta}\|_{\mathcal{B}'} = 0 \implies Q_{\theta} = Q^*.$$

• $0 < \|\mathcal{T}_B Q_{\theta} - Q_{\theta}\|_{\mathcal{B}'} = \delta \ll 1 \implies \|Q_{\theta} - Q^*\|_{\mathcal{B}} < ?$

Definition (Stability of Functional Equations)

Given two Banach spaces \mathcal{B}_1 and \mathcal{B}_2 , if there exist $\delta > 0$ and C > 0 such that for all $Q \in \mathcal{B}_1 \cap \mathcal{B}_2$ satisfying $\|\mathcal{T}Q - Q\|_{\mathcal{B}_1} < \delta$, we have that $\|Q - Q^*\|_{\mathcal{B}_2} < C\|\mathcal{T}Q - Q\|_{\mathcal{B}_1}$, then we say a nonlinear functional equation $\mathcal{T}Q = Q$ is $(\mathcal{B}_1, \mathcal{B}_2)$ -stable.

• If $\mathcal{T}Q = Q$ is $(\mathcal{B}_1, \mathcal{B}_2)$ -stable, then $||Q - Q^*||_{\mathcal{B}_2} = O(||\mathcal{T}Q - Q||_{\mathcal{B}_1})$, as $||\mathcal{T}Q - Q||_{\mathcal{B}_1} \longrightarrow 0$, $\forall Q \in \mathcal{B}_1 \cap \mathcal{B}_2$.

Haoran Li (UCAS)

Stability of Bellman Optimality Equations

Theorem (Stable and Unstable Properties of \mathcal{T}_B in L^p Spaces)

For any MDP M, let C_{P,p} := sup_{(s,a)∈S×A} ||P(· | s, a)||_{L^p/P-1}(S).
 Assume p and q satisfy the following conditions:

$$\mathcal{C}_{\mathbb{P},p} < rac{1}{\gamma}; \quad p \geq \max\left\{1, rac{\log\left(|\mathcal{A}|
ight) + \log\left(\mu\left(\mathcal{S}
ight)
ight)}{\lograc{1}{\gamma\mathcal{C}_{\mathbb{P},p}}}
ight\}; \quad p \leq q \leq \infty.$$

Then, Bellman optimality equation $\mathcal{T}_B Q = Q$ is (L^q, L^p) -stable.

• There exists an MDP such that for all $1 \le q , the Bellman optimality equations <math>\mathcal{T}_B Q = Q$ is not (L^q, L^p) -stable.

$$\mathcal{B}'$$
 should also be $L^{\infty}(\mathcal{S} \times \mathcal{A})$.

Stability of Deep Q-network (DQN) in Practice

Theorem (Stable and Unstable Properties of \mathcal{T}_B in $(p, d^{\pi}_{\mu_0})$ Spaces)

• For any MDP \mathcal{M} and policy π , let $C_{\mathbb{P},p} := \sup_{(s,a)} \left\| \mathbb{P}(\cdot \mid s, a) \right\|_{L^{\frac{p}{p-1}}}$. Assume $C_{d_{\mu_0}^{\pi}} := \inf_{(s,a)} d_{\mu_0}^{\pi}(s, a) > 0$ and p and q satisfy:

$$\mathcal{L}_{\mathbb{P},p} < rac{1}{\gamma}; \quad p \geq \max\left\{1, rac{\log\left(|\mathcal{A}|
ight) + \log\left(\mu\left(\mathcal{S}
ight)
ight)}{\lograc{1}{\gamma \mathcal{L}_{\mathbb{P},p}}}
ight\}; \quad p \leq q \leq \infty.$$

Then, Bellman optimality equation $\mathcal{T}_B Q = Q$ is $\left(L^{q,d_{\mu_0}^{\pi}}, L^p\right)$ -stable. • There exists an MDP \mathcal{M} such that for all π satisfying $M_{d_{\mu_0}^{\pi}} := \sup_{(s,a)} d_{\mu_0}^{\pi}(s,a) < \infty$, Bellman optimality equation $\mathcal{T}_B Q = Q$ is not $\left(L^{q,d_{\mu_0}^{\pi}}, L^p\right)$ -stable, for all $1 \le q .$

 $\|\mathcal{T}_B Q_{\theta} - Q_{\theta}\|_{\infty, d_{\mu_0}^{\pi_{\theta}}}$ is crucial for ensuring both the natural performance and robustness of DQN.

Haoran Li (UCAS)

Consistent Adversarial Robust DQN (CAR-DQN)

• Theoretical Objective: Bellman Infinity-error, i.e.,

$$\mathcal{L}_{car}(heta) = \left\| \mathcal{T}_B Q_ heta - Q_ heta
ight\|_{\infty, d_{\mu_0}^{\pi_ heta}}.$$

• Surrogate Objective:

$$\mathcal{L}_{car}^{soft}(\theta) = \sum_{i \in |\mathcal{B}|} \alpha_i \max_{s_{\nu} \in B_{\epsilon}(s_i)} \left| r_i + \gamma \max_{a'} Q_{\bar{\theta}}(s'_i, a') - Q_{\theta}(s_{\nu}, a_i) \right|,$$

where

$$\alpha_i = \frac{e^{\frac{1}{\lambda}\max_{s_{\nu}}\left|r_i + \gamma\max_{a'}Q_{\bar{\theta}}(s'_i, a') - Q_{\theta}(s_{\nu}, a_i)\right|}}{\sum_{i \in |\mathcal{B}|} e^{\frac{1}{\lambda}\max_{s_{\nu}}\left|r_i + \gamma\max_{a'}Q_{\bar{\theta}}(s'_i, a') - Q_{\theta}(s_{\nu}, a_i)\right|}}.$$

CAR-DQN

Experiments

Natural and Robust Returns Show Consistency

natural and robust performance.

Haoran Li (UCAS)

Bellman Infinity-error is Necessary

Environment	Norm	Natural	PGD	MinBest	ACR
Pong	L^1	21.0 ± 0.0	-21.0 ± 0.0	-21.0 ± 0.0	0
	L^2	21.0 ± 0.0	-21.0 ± 0.0	-20.8 ± 0.1	0
	L^{∞}	21.0 ± 0.0	21.0 ± 0.0	21.0 ± 0.0	0.985
Freeway	L^1	33.9 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0
	L^2	21.8 ± 0.3	21.7 ± 0.3	22.1 ± 0.3	0
	L^{∞}	33.3 ± 0.1	33.2 ± 0.1	33.2 ± 0.1	0.981
BankHeist	L^1	1325.5 ± 5.7	27.0 ± 2.0	0.0 ± 0.0	0
	L^2	1314.5 ± 4.0	18.5 ± 1.5	22.5 ± 2.6	0
	L^{∞}	1356.0 ± 1.7	1356.5 ± 1.1	1356.5 ± 1.1	0.969
RoadRunner	L^1	43795 ± 1066	0 ± 0	0 ± 0	0
	L^2	30620 ± 990	0 ± 0	0 ± 0	0
	L^{∞}	49500 ± 2106	48230 ± 1648	48050 ± 1642	0.947

Ablation studies across different L^p spaces confirm our theoretical findings on the necessity of the Bellman infinity-error for robustness. CAR-DON

Experiments

CAR-DQN Shows Superior Natural and Robust Returns

Relaxation Haoran Li (UCAS)

Convex

RADIAL-DON

WocaR-DON

CAR-DON (Ours)

 33.2 ± 0.1

1.000

0.998

0.992

0.981

 46372 ± 882

 46224 ± 1133

 43686 ± 1608

 49398 ± 1106

 44960 ± 1152

 45990 ± 1112

 45636 ± 706

 49456 ± 992

 30.0 ± 0.0

 33.3 ± 0.1

 31.0 ± 0.0

 30.0 ± 0.0

 33.1 ± 0.1

 30.8 ± 0.1

 33.2 ± 0.1

 30.0 ± 0.0

 $\mathbf{33.3} \pm 0.1$

 31.0 ± 0.0

 33.2 ± 0.1

0.994

0.956

0.760

 45226 ± 1102

 46082 ± 1128

 45636 ± 706

 47526 ± 1132

18 / 21

Summary

- Under the mild consistency assumption of policy, the optimal robust policy exists and aligns with the Bellman optimal policy.
- This theoretically highlights that improving the adversarial robustness does not require sacrificing natural performance.
- The Bellman infinity-error is necessary for achieving ORP, while prior DRL algorithms lack robustness due to their use of 1-error.
- CAR-DQN employs a surrogate objective of the Bellman infinity-error to learn both natural return and robustness.

Q & A

Feel free to contact Haoran Li! Welcome collaboration! Contact: @leolmia or lihaoran21@mails.ucas.ac.cn

Tiande Guo Congying Han Zicheng Zhang Wang Luo Yudong Hu Shichen Liao

Paper: arxiv.org/abs/2402.02165 Code: github.com/leoranlmia/CAR-DQN

Selected Reference

- Huan Zhang et al. "Robust deep reinforcement learning against adversarial perturbations on state observations". In: Advances in Neural Information Processing Systems 33 (2020), pp. 21024–21037.
- [2] Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
- [3] Tuomas Oikarinen et al. "Robust deep reinforcement learning through adversarial loss". In: Advances in Neural Information Processing Systems 34 (2021), pp. 26156–26167.
- [4] Yongyuan Liang et al. "Efficient adversarial training without attacking: Worst-case-aware robust reinforcement learning". In: Advances in Neural Information Processing Systems 35 (2022), pp. 22547–22561.