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Background

Vulnerability of Deep Reinforcement Learning
Deep reinforcement learning agents are quite vulnerable to minor
perturbations in their state observations.

DQN Pong
PGD attack
Reward: -21
(lowest)

PPO Humanoid
Robust Sarsa Attack

Reward: 719
(original 4386)

DDPG Ant
Robust Sarsa Attack

Reward: 258
(original 2462)

Image Source: Zhang et al. 2020.

This poses a major challenge for deploying DRL in the real world.
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Background Reinforcement Learning

Markov Decision Process: Formulation of RL
M = (S,A, r ,P, γ, µ0)

▶ State space S ⊂ Rd is a compact set.
▶ Action space A is a finite set.
▶ Reward function r : S ×A −→ R.
▶ Transition dynamics P : S ×A −→ ∆(S), where ∆ (S) is the

probability space over S.
▶ Discount factor γ ∈ [0, 1).
▶ Initial state distribution µ0 ∈ ∆(S).

Image Source: Sutton and Barto 2018
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Background Reinforcement Learning

Bellman Optimal Policy: Objective of RL

Given a MDP M, for any policy π, define
▶ value function: V π

M(s) = Eτ∼π,P [
∑∞

t=0 γ
tr(st , at)|s0 = s] ,

▶ Q function: Qπ
M(s, a) = Eτ∼π,P [

∑∞
t=0 γ

tr(st , at)|s0 = s, a0 = a] ,

where trajectory τ = (s0, a0, r0, s1, a1, r1 . . . ).

Objective:
max
π

V π
M(s), for a given state s.

There exists a stationary and deterministic policy π∗ that
simultaneously maximizes V π(s) for all s ∈ S, and Q∗ := Qπ∗

satisfies the Bellman optimality equations, i.e.

Q∗(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
max
a′∈A

Q∗ (s ′, a′)] .
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Related Work and Challenges

State-Adversarial MDP (Zhang et al. 2020): Elegant
Formulation of RL against Perturbations on Observations

Mν = (S,A, r ,P, ν, γ, µ)
▶ Adversary ν : S −→ S, s 7−→ sν ∈ B(s).

value function: V π◦ν(s) = Eπ◦ν,P [
∑∞

t=0 γ
tr(st , at)|s0 = s] ,

Q function: Qπ◦ν(s, a) = Eπ◦ν,P [
∑∞

t=0 γ
tr(st , at)|s0 = s, a0 = a].
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Related Work and Challenges

Challenges of SA-MDP

Objective of SA-MDP: Optimal Robust Policy (ORP)

Strongest Adversary: Given a policy π, the strongest adversary
ν∗(π) = argminν V

π◦ν exists.

An ORP π∗ should maximize the value function against this strongest
adversary for all states, i.e. V π∗◦ν∗(π∗)(s) = maxπ V

π◦ν∗(π)(s), ∀s.

However, unlike standard MDPs, ORP of SA-MDPs may not exist.

Deterministic policies are not sufficient to achieve ORP.

Even stochastic ORP may not always exist.

This reveals a potential conflict between robustness and policy optimality,
making it challenging to enforce strict robustness constraints.
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Optimal Adversarial Robustness

When does the ORP exist?

Under the Consistency Assumption of
Policy, ORP exists, and aligns with the

Bellman optimal policy!
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Optimal Adversarial Robustness

Consistency Assumption of Policy (CAP)
Define the intrinsic state ϵ-neighbourhood for any state s as

B∗
ϵ (s) :=

{
s ′ ∈ S|s ′ ∈ Bϵ(s), argmax

a
Q∗(s ′, a) = argmax

a
Q∗(s, a)

}
.

Assumption (Consistency Assumption of Policy)

For all s ∈ S, its adversary ϵ-perturbation set is the same as the intrinsic
state ϵ-neighbourhood, i.e., Bϵ(s) = B∗

ϵ (s).

The set of states violating CAP is nearly empty.

Theorem (Rationality of the CAP)

Let Snin denote the set of states violating the CAP. Then, we have that
Snin ⊆ Snu ∪ S0 + Bϵ, where Snu is the state set where the optimal action
is not unique, and S0 is the set of discontinuous points that cause the
optimal action to change. These sets are nearly empty in practical tasks.
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Optimal Adversarial Robustness

Existence of the Optimal Robust Policy under CAP
Define the consistent adversarial robust (CAR) operator as

(TcarQ) (s, a) = r(s, a) + γEs′∼P(·|s,a)

[
min

s′ν∈Bϵ(s′)
Q

(
s ′, argmax

as′ν

Q
(
s ′ν , as′ν

))]
.

Tcar is not contractive.

Theorem (Relation between Q∗ and Qπ∗◦ν∗(π∗))

If the optimal adversarial action-value function Qπ∗◦ν∗(π∗) under the
strongest adversary exists for all s ∈ S and a ∈ A, then it is the fixed
point of CAR operator.

If the CAP holds, then Q∗ is the fixed point of CAR operator Tcar .
Furthermore, Q∗ is the optimal adversarial action-value function
under the strongest adversary, i.e., Q∗(s, a) = Qπ∗◦ν∗(π∗)(s, a), for all
s ∈ S and a ∈ A.
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Policy Robustness under Bellman p-error

Bellman optimal policy doubles as ORP!
— Improving adversarial robustness does not
require sacrificing natural performance.

Why do conventional DRL algorithms, which aim

for the Bellman optimal policy, fail to ensure

adversarial robustness?

Infinity-error is necessary!

Previously 1-error ✗
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Policy Robustness under Bellman p-error

L∞ is Necessary for Adversarial Robustness

For any Banach space B, if ∥Qθ − Q∗∥B = 0, then Qθ = Q∗.

However, in practice, 0 < ∥Qθ − Q∗∥B = δ ≪ 1 =⇒ Qθ = ?

Theorem (Necessity of L∞-norm)

Let SQ
sub denote the set of states where the greedy policy according to Q is

suboptimal and SQ
adv denote the set of states within whose ϵ-neighborhood

there exists the adversarial state. There exists an MDP instance such that
the following statements hold.

(1). For any 1 ≤ p < ∞ and δ > 0, there exists a function Q satisfying

∥Q − Q∗∥p ≤ δ such that µ
(
SQ
sub

)
= O(δ) yet µ

(
SQ
adv

)
= µ (S).

(2). There exists a δ̄ > 0 such that for any 0 < δ ≤ δ̄, and any function Q

satisfying ∥Q − Q∗∥∞ ≤ δ, we have that µ
(
SQ
sub

)
= O(δ) and

µ
(
SQ
adv

)
= 2ϵ+ O (δ).
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Policy Robustness under Bellman p-error

Stability of Nonlinear Functional Equations
∥Qθ − Q∗∥B cannot be directly measured.
Instead, minimize the Bellman error ∥TBQθ − Qθ∥B′ to train Qθ,
where TB is the Bellman optimality operator.
We have shown that B should be L∞ (S ×A).

B′ = ?

∥TBQθ − Qθ∥B′ = 0 =⇒ Qθ = Q∗.
0 < ∥TBQθ − Qθ∥B′ = δ ≪ 1 =⇒ ∥Qθ − Q∗∥B < ?

Definition (Stability of Functional Equations)

Given two Banach spaces B1 and B2, if there exist δ > 0 and C > 0 such
that for all Q ∈ B1 ∩ B2 satisfying ∥T Q − Q∥B1 < δ, we have that
∥Q − Q∗∥B2 < C∥T Q − Q∥B1 , then we say a nonlinear functional
equation T Q = Q is (B1,B2)-stable.

If T Q = Q is (B1,B2)-stable, then ∥Q − Q∗∥B2 = O (∥T Q − Q∥B1),
as ∥T Q − Q∥B1 −→ 0, ∀Q ∈ B1 ∩ B2.
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Policy Robustness under Bellman p-error

Stability of Bellman Optimality Equations

Theorem (Stable and Unstable Properties of TB in Lp Spaces)

For any MDP M, let CP,p := sup(s,a)∈S×A ∥P(· | s, a)∥
L

p
p−1 (S)

.

Assume p and q satisfy the following conditions:

CP,p <
1

γ
; p ≥ max

{
1,

log (|A|) + log (µ (S))
log 1

γCP,p

}
; p ≤ q ≤ ∞.

Then, Bellman optimality equation TBQ = Q is (Lq, Lp)-stable.

There exists an MDP such that for all 1 ≤ q < p ≤ ∞, the Bellman
optimality equations TBQ = Q is not (Lq, Lp)-stable.

B′ should also be L∞ (S ×A).
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Policy Robustness under Bellman p-error

Stability of Deep Q-network (DQN) in Practice

Theorem (Stable and Unstable Properties of TB in (p, dπ
µ0
) Spaces)

For any MDP M and policy π, let CP,p := sup(s,a) ∥P(· | s, a)∥
L

p
p−1

.

Assume Cdπ
µ0

:= inf(s,a) d
π
µ0
(s, a) > 0 and p and q satisfy:

CP,p <
1

γ
; p ≥ max

{
1,

log (|A|) + log (µ (S))
log 1

γCP,p

}
; p ≤ q ≤ ∞.

Then, Bellman optimality equation TBQ = Q is
(
Lq,d

π
µ0 , Lp

)
-stable.

There exists an MDP M such that for all π satisfying
Mdπ

µ0
:= sup(s,a) d

π
µ0
(s, a) < ∞, Bellman optimality equation

TBQ = Q is not
(
Lq,d

π
µ0 , Lp

)
-stable, for all 1 ≤ q < p ≤ ∞.

∥TBQθ − Qθ∥∞,d
πθ
µ0

is crucial for ensuring both the natural
performance and robustness of DQN.
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CAR-DQN Algorithm

Consistent Adversarial Robust DQN (CAR-DQN)

Theoretical Objective: Bellman Infinity-error, i.e.,

Lcar (θ) = ∥TBQθ − Qθ∥∞,d
πθ
µ0
.

Surrogate Objective:

Lsoft
car (θ) =

∑
i∈|B|

αi max
sν∈Bϵ(si )

∣∣∣∣ri + γmax
a′

Qθ̄(s
′
i , a

′)− Qθ(sν , ai )

∣∣∣∣ ,
where

αi =
e

1
λ
maxsν |ri+γmaxa′ Qθ̄(s

′
i ,a

′)−Qθ(sν ,ai )|∑
i∈|B| e

1
λ
maxsν |ri+γmaxa′ Qθ̄(s

′
i ,a

′)−Qθ(sν ,ai )|
.
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CAR-DQN Experiments

Natural and Robust Returns Show Consistency

CAR-DQN exhibits consistent
natural and robust performance.
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CAR-DQN Experiments

Bellman Infinity-error is Necessary

Ablation studies across different Lp spaces
confirm our theoretical findings on

the necessity of the Bellman infinity-error for robustness.
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CAR-DQN Experiments

CAR-DQN Shows Superior Natural and Robust Returns
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Summary

Summary

Under the mild consistency assumption of policy, the optimal
robust policy exists and aligns with the Bellman optimal policy.

This theoretically highlights that improving the adversarial
robustness does not require sacrificing natural performance.

The Bellman infinity-error is necessary for achieving ORP, while
prior DRL algorithms lack robustness due to their use of 1-error.

CAR-DQN employs a surrogate objective of the Bellman
infinity-error to learn both natural return and robustness.
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Thank you!

Q & A
Feel free to contact Haoran Li! Welcome collaboration!
Contact: @leolmia or lihaoran21@mails.ucas.ac.cn

Tiande Guo Congying Han Zicheng Zhang Wang Luo Yudong Hu Shichen Liao

Paper: arxiv.org/abs/2402.02165
Code: github.com/leoranlmia/CAR-DQN

Haoran Li (UCAS) Adversarial Robustness of RL ICML 2024, Vienna 20 / 21

https://arxiv.org/abs/2402.02165
https://github.com/leoranlmia/CAR-DQN


Thank you!
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